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1 Introduction

In the past decades, growth in air traffic has outstripped the development of runways and other passen-

ger handling infrastructures. As a result, many airports worldwide have experienced critical shortages of

infrastructure capacity.

To improve organizational efficiency, a recent topic in airport management regards the allocation of

slots. Following the definition of the trade association for the world’s airlines (International Air Transport

Association, IATA), a slot is a permit that allows access to the full range of airport infrastructure necessary

for departure or landing at a certain airport, within a specific time frame. The analysis of slot allocation

focuses on relevant policies to allocate scarce airport slots in an efficient way.

In the literature on slot allocation, Picard et al. (2019) define “allocative inefficiency” as the situation

where not all available peak slots are used. Consistent with recent empirical evidence,1 they find that

allocation inefficiency may arise if the airport is not heavily congested and the airport charge is small. In

particular, allocative inefficiency emerges in a fully regulated private airport that obtains exogenous and

uniform revenues from each passenger.2

In recent years though, the tendency of airport regulation is moving towards less governmental involve-

ment. First, many traditionally public-owned airports have undergone privatization. Starting with the

privatization of airports in the UK in the late 1980s, more and more airports have been (either fully or par-

tially) privatized worldwide (e.g. Oum et al., 2004; Winston and Ginés, 2009). According to IATA (2017),

the share of fully privately owned airports in Europe increased from 9% to 16% between 2010 and 2016 while

the share of mixed ownership models increased from 13% to 25% over the same period.3 As the ownership

of airports changes from public to private, the goal of airports is expected to be shifting from social benefits

to profit maximization.

Second, there are calls for the dismantlement of regulation and less-stringent price monitoring. As pointed

out in ACI (2017), “The role of a regulator and its oversight function is to monitor and ensure there is no

significant abuse of market power... Strict forms of price regulation result in allocative inefficiencies which

affect economic incentives adversely.” Thus, a “light-handed” approach to regulation is setting in. For

instance, some airport authorities determine a ceiling on the increase in passenger revenues obtained from

basic airport services.4

1See, among others, Zografos et al. (2013), Katsaros and Psaraki (2012) and Airports Council International Europe (2009).
2Throughout the paper, we will use the term regulated to the case where the passenger-based airport revenue is determined

exogenously by policymakers throughout, and unregulated to the case where this revenue is determined by the airport.
3Worldwide, among the 100 busiest airports for passenger throughput, 46% have private sector participation. And 41% of

global airport traffic is handled by airports that are managed and/or financed by private stakeholders (IATA, 2017).
4This then defines the maximum annual revenue per passenger for each year in the regulatory period (e.g., Airports Regulation

Document 2017-2021, 2017)
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To this matter, the most relevant regulatory point is the handling of per-passenger fees. Indeed, the

airports’ income in the past years was mainly based on passenger charges (i.e. passenger service charges,

security, and transfer charges), rather than fees that apply directly to aircraft operators (ICAO, 2013).5 In

Europe, for example, airport passenger charges paid on the average airfare to fly from European airports

more than doubled between 2006 and 2016 (ICAO, 2013; IATA, 2017). Given the growing importance of the

per-passenger revenue, the analysis of the impact of the deregulation on this revenue on the overall airport

slot strategy seems highly policy relevant.

The purpose of the present paper is to revisit the slot allocation problem in a setting where the airport is

unregulated with no restrictions on the level of charges to passengers. The key assumption is that an airport

can generate uniform per-passenger revenue, which reflects real world practice.6 Traditionally airports levied

a single uniform Departing Passenger Charge (DPC), payable by the airline, which was perceived to meet

all the costs of providing terminal services.7 Typically, airports do not charge passengers directly. Assuming

reasonably competitive airline markets, there is every reason to think these charges are ultimately passed

through to fares.

The framework is a natural sequel of Picard et al. (2019), where a congestible airport accommodates a

number of independent destinations, each served by two competing airlines, and establishes slot allocation.

Compared to Picard et al. (2019), we assume an “unregulated” airport, in the sense that it is free to set per

passenger fees without any regulatory constraint.

Our findings show that allocative inefficiency resulting from unused peak slots, a possible outcome at

a regulated private airport, would vanish at an unregulated private airport. This is so because when the

private airport now has two managing instruments, it would prefer to distort price rather than slots. The

distortion of price sets downward pressure on the distortion of allocative efficiency. As a result, no allocative

inefficiency would appear with private airport ownership. Interestingly, in an unregulated environment, the

airport revenue would never be set to a too low level by a private airport. These results are consistent

with empirical regularities. For instance, Bel and Fageda (2010) find that the airports controlled by private

companies that are not subject to regulation fix higher prices than regulated airports.

In the analysis of social welfare, we then investigate the effect of liberalizing per-passenger fees using a

5The passenger-based revenues represent 63% of total aeronautical income according to ICAO (2013). In this regard, see
Zhang (2012) and Czerny et al. (2017) for discussions about airport improvement fees, which are used to charge passengers for
airport infrastructure development and/or debt repayment, are becoming a more important revenue source for airports.

6Airports are allowed to levy a uniform per-passenger fee for flight activities. Regarding passenger service charges, ICAO
(2012) recommends that the “these (passenger service) charges should be levied through the aircraft operators where practicable.
The need for consultations between airport entities and users at the local level with a view to alleviating collection problems
should be emphasized.”

7The charge covers all the terminal infrastructure, provision of check-in desks, baggage system and security screening. The
DPC can be split into separate charges for passengers (mainly basic infrastructure and security screening), a fee per bag, rental
of the check-in desk, self-service check-in kiosks, etc. All these charges are levied on the airline.
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numerical simulation. The increase in per-passenger fee when the regulated counterparts were originally low

generally leads to a fall in social welfare, which might question the liberalization of fees in the first place

even if the use of resources is more efficient.

Related literature. The present study, to the best of our knowledge, is the first that combines the

analysis of slots and pricing policies, and thus, it is related to both literatures.

In the literature on slot allocation, the reference paper is Picard et al. (2019). Similar to Picard et al.

(2019), Barbot (2004) models different slot periods as vertically differentiated products with high or low

quality, by letting airlines determine their number of flights. Verhoef (2010) and Brueckner (2009) evaluate

the effect of the adoption of a slot allocation in comparison with the alternative policy of congestion pricing.

Both contributions show that slot trading or auctioning and the first best congestion pricing give the same

level of passenger volume and welfare. Unlike the present contribution, they do not let the airport allocate

slots without charges. Verhoef (2010) and Brueckner (2009) are generalized by Basso and Zhang (2010), who

introduce airport profits into the analysis. In this case, the adoption of slot allocation or congestion pricing

brings about different results.

The literature on airport pricing policies is rich. To cite some relevant contributions, Ivaldi et al. (2015)

and Mart́ın and Socorro (2009) assume that airports negotiate prices with the airlines and charge them for

the use of the aeronautical facilities at the airport, and they charge the passengers through the prices of

non-aeronautical facilities. Lin and Zhang (2017) assumed private airports levy per-flight charges on hub

carriers, which could be either movement-related or weight-related, and per-passenger charges to maximize

profits. Czerny (2013) assumes in the area of aeronautical services, the airport is a monopoly provider

and charges a price per passenger to airlines. Lin and Zhang (2017) assumed private airports levy per-flight

charges on hub carriers, which could be either movement-related or weight-related, and per-passenger charges

to maximize profits. Czerny (2013) assumes in the area of aeronautical services, the airport is a monopoly

provider and charges a price per passenger to airlines. These papers, however, do not discuss the interplay

between optimal per-passenger fee choice and slot allocation.

The remainder of this paper is organized as follows. The baseline model is presented in section 2. The

results are outlined in section 3. Section 5 sets forth the conclusion.

2 The Model

The model setting is built on Picard et al. (2019). We examine an airport that has connections to N

uncongested pair airports. Each market is served by two separate airlines, which offer a single flight. The

model deals with single trip departing flights. Markets are indexed by market size z, which is distributed
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according to the cumulative distribution function G over the interval [z, z̄].

Quality differential is characterized only by the departing time: there are two travel periods i, namely

peak (i = 1) and off-peak (i = 0). A peak period represents the time window that consists of the most

desirable travel times in a day, whilst an off-peak period contains all the rest time intervals.

The peak and offpeak times capacities are denoted as M and L. The offpeak period capacity is abundant

and can accommodate airline demands regardless of peak period capacity (M < 2N < M + L). Conversely,

the peak period is congested.

2.1 Passengers

In the airport, destinations attract heterogenous passenger demands. We assume that a destination z ∈

[z, z] attracts z passengers and that destination demands are distributed according to the c.d.f. G(z).

Every destination market is vertically differentiated (Gabszewicz and Thisse, 1979). All potential passengers

acknowledge and agree over peak load hours are preferable than the off-peak load hours at an equal price,

i.e., slot qualities, denoted as s0 and s1 for offpeak and peak slots, respectively, are exogenously perceived:

s1 > s0 > 0.

Passengers differ by their taste parameter v ∈ [0, 1], v being uniformly distributed. They are endowed

with the utility function: Ui(v, pi) = vsi − pi if they fly at peak (i = 1) or offpeak time (i = 0) with ticket

price pi.

2.2 Airline markets

In a destination market z two airlines, a and b, engage in seat (quantity) competition. Airline a sets its

aircraft size qa(z) taking its rival’s quantity qb(z) as given. Airline a’s profit in airport pair z is

πa(z) = [pa(z)− φ]qa(z), (1)

where pa(z) is its fare, φ is a per-passenger charge paid to the airport. Variable operating costs are

normalized to zero. The airport gets a revenue φ per passenger.

2.3 The airport

The analysis considers both a private and a public airport. The private airport proposes a slot allocation

and airport charge that maximize its revenues:
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Π =

∫ z̄

z

φ[qa(z) + qb(z)]NdG(z). (2)

2.4 Timing and equilibrium concept

The timing is as follows. In the first stage, the airport sets per passenger fees. In the second stage, the

airport only allocates slots for peak and offpeak travel periods. A sequential relationship between these

two operations reflect the fact that, while slot allocation is determined on daily basis, per passenger fees

are generally pre-set for a certain time period.8 In the third stage, the airlines operating in airport pairs

non-cooperatively choose their seat supplies based on the slot allocation. The equilibrium concept is the

sub-game perfect Nash equilibrium.

3 Results

3.1 Airline competition

In the market stage, the competing airlines of each destination simultaneously choose their aircraft seat

capacity. Airport per-passenger revenue is taken as given. When both flights depart at the same time range,

subscript i ∈ {0, 1} denotes the capacity seats of both airlines. By contrast, in a market where flights go

both on peak and offpeak time, subscripts 01 and 10 denote the capacity seats of the airline operating in the

offpeak and peak time, respectively. Thus, the equilibrium seat capacities in different (offpeak, peak) and

same time periods are qa(z) = zq01, q
b(z) = zq10 and qa(z) = qb(z) = zqi, respectively, where

qi =
si − φ

3si
, for every i ∈ {0, 1}, (3)

q01 =
s1s0 − φ (2s1 − s0)

(4s1 − s0) s0
, (4)

q10 =
2s1s0 − φ
4s1 − s0

. (5)

Comparing the quantities of the different market configurations, we get:

q10 > q1 > q0 > q01, (6)

q01 + q10 > 2q0, (7)

q01 + q10 > 2q1 ⇐⇒ φ < φ̂ ≡ s0s1

6s1 − 2s0
. (8)

8Since there is no strategic interaction between the first and second stages, the results do not change if the airport choices
are simultaneous.

6



Inequalities in (6) say that peak flights carry larger numbers of passengers than offpeak ones; this differ-

ence is more acute when airlines are allocated to different travel periods. Inequalities (7) and (8) indicate

that differentiated airlines supply more passengers than offpeak airlines regardless of φ, and may supply

more passengers than peak airlines if φ is sufficiently small, respectively.

Condition

0 < φ < φ̄ ≡ s0s1

2s1 − s0
(9)

ensures that both airlines coexist in a destination market, regardless of which slots they obtain. One may

notice that φ̂ < φ̄.

3.2 Regulated airport

In the second stage, the airport sets the optimal slot allocation. In a regulated airport, per-passenger fees

are established by an external authority. The regulated airport maximizes its profits by allocating peak slots

subject to the limited capacity.

We denote by n0(z), n01(z) and n1(z) ∈ {0, 1} the airport’s decision variables to allocate respectively an

offpeak/offpeak, peak/offpeak and peak/peak configuration in market z. Only one of these decision variables

takes a value of 1, while the other two take zero value: n0(z) + n01(z) + n1(z) = 1. The airport problem is:

max
n0(·),n01(·),n1(·)

φ

∫ z̄

z

z[2q0n0(z) + (q01 + q10)n01(z) + 2q1n1(z)]NdG(z), (10)

subject to ∫ z̄

z

[n01(z) + 2n1(z)]NdG(z) ≤M, (11)

and n0(z) + n01(z) + n1(z) = 1. Replacing n0(z) from the latter identity and pointwise maximizing with

respect to n01 and n1, one readily finds the marginal incentives to set either two different slots or two peak

slots for city pair z:

L01 =zφ(q01 + q10 − 2q0)− µ = 0, (12)

L1 =2zφ(q1 − q0)− 2µ = 0, (13)

where µ ≥ 0 is the Khun Tucker multiplier of the capacity constraint (11). We have L01 = 0 and L1 = L01

for
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z01 =
µ/φ

q01 + q10 − 2q0
and z∗ =

µ/φ

2q1 − (q01 + q10)
(14)

respectively.

The solution to this problem depends on the level of per-passenger fees. From equation (8), we know

that, when φ < φ̂, the flow of passengers is larger in the peak/offpeak configuration than in the peak/peak

and offpeak/offpeak configuration: q01 + q10 > 2q1 > 2q0. As illustrated in the first panel of Figure 1, it

follows that the marginal profit of letting one flight into the peak slot L01 is always larger than that obtained

by allowing two peak flights L1. In this case, the airport never allocates two peak slots on two flights to a

same destination z. It allocates two different slots if L01 ≥ 0, i.e. z ≥ z01, and allocates two offpeak slots

otherwise. We obtain the discriminatory allocative schedule, defined as follows:

Definition 1 A discriminatory allocative schedule grants at most one peak flight per destination market.

It allocates a peak/offpeak configuration to high demand destinations with z > z01 and an off-peak/off-peak

configuration to low demand ones with z ≤ z01.

Next consider φ > φ̂. By equation (8), the peak slots generate the highest market outcome among all

three allocation profiles: 2q1 > max{q01 + q10, 2q0}. As illustrated in the second panel of Figure 1, the

marginal profit L1 increases in z faster than L01 and becomes larger than the latter iff z ≥ z∗. Under this

condition, the airport prefers to allocate two peak slots compared to two different slots. On the other hand,

the marginal profit L01 is positive for z ≥ z01. Under this condition, the airport prefers to allocate different

slots rather than two offpeak slots. Then the airport grants two peak slots to large market destinations and

none to small ones. Destinations with intermediate market sizes receive only one peak slot. In other words,

there is a mixture of all three patterns in this case, according to the following definition.

Definition 2 A balanced allocative schedule grants a peak/peak configuration to high demand destinations

z > z∗, a peak/offpeak configuration to inter-mediate demand ones z ∈ [z01, z
∗) and an offpeak/offpeak to

low demand ones z ≤ z01.

The following proposition summarizes the allocative schedule based on the level of regulated fees.

Proposition 1 (Picard et al. (2019)) If the regulated fees are φ < φ̂, the private airport implements a

discriminatory allocative schedule. Otherwise, it implements a balanced allocative schedule.

Proposition 1 replicates the result in Picard et al. (2019). It allows us to make some considerations about

allocative inefficiency, defined as follows.
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Figure 1: Marginal profits of shifting one or two flights to the peak period

Definition 3 Allocative inefficiency describes the situation where airports restrain their supply of peak slots

strictly below their capacity levels.

Figure 1 shows the solution for low regulated fees (φ < φ̂, panel a) and high regulated fees (φ > φ̂,

panel b). By Proposition 1, allocative inefficiency occurs when the discriminatory allocative schedule is

implemented, that is, when φ < φ̂. In this case, some peak slots may not be used if the peak slots are

relatively abundant (2N > M > N). When the capacity constraint is not binding (µ = 0), the airport

allocates different slots to each city pair since L01 > 0. It leaves peak slots empty although there is a

demand for it. Zografos et al. (2013) and Zografos et al. (2012), among others, found empirical evidence for

slot misuse, confirming that allocative inefficiency exists at some airports. By contrast, when regulated fees

are sufficiently high, φ > φ̂, allocative inefficiency does not emerge.
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3.3 Unregulated airport

This section outlines the innovative results of the paper, by examining the effect of liberalizing per-passenger

fees on the two situations presented above.

3.3.1 Low fees

In the first stage, the airport maximizes its objective function by choosing the level of per-passenger fees

φ∗. Notice that, the airport choice strictly depends on the slot allocation schedule. Hence, once obtained

the optimal level of per passenger fees, the airport must verify whether this is consistent with the allocation

choice, that is, if φ lies in the range determined by the equilibrium allocation. Finally, the airport must

evaluate if φ∗ ensures an interior solution in the market stage: φ∗ ≶ φ̂.

We start with case φ < φ̂. In this case, we know that if the fee satisfies φ∗ < φ̂, airport will assign 0

slots to the markets with size z ≤ z01 and one slot to markets with size z > z01. Given the equilibrium slot

allocation, we may rewrite the airport problem in the first stage as follows:

max
φ

φ

[ ∫ 1

max(z01,0)

z(q01 + q10)NdG(z) +

∫ max(z01,0)

0

z(2q0)NdG(z)

]
, (15)

where z01 = G−1(1− M
N ). Notice that the airport charge does not affect the allocation pattern, rather only

the market outcome (passenger volume) for a given market configuration. In other words, setting the charge

would not affect the number of peak slots any market would receive, as this is determined exogenously by

N , M and z.

The optimal fee is determined by the first-order condition of (15) with respect to φ. We denote this

optimal fee as φ∗a, then φ∗a can be written as:

φ∗a =
s0

4

α1(9s1 − 3s0) + α2(8s1 − 2s0)

[3α1s1 + α2(4s1 − s0)]
, (16)

where α1 =
∫ 1

max(z01,0)
zNdG(z) > 0, α2 =

∫max(z01,0)

0
zNdG(z) > 0. 9

If the number of destinations is small (N < M), the capacity constraint is not binding, z01 = 0, thus

all destinations will each receive one peak slot. Given this, the airport chooses the optimal charge so as to

maximize φ
∫ 1

0
z(q01 + q10)NdG(z). On the contrary, if the number of destinations is large (N > M), only

the largest M destinations will each receive a peak slot, in which case the airport chooses optimal charge to

9The second order condition is always respected:

∂2Π
(
n∗
k

)
∂φ2

= −
4s1α1

s0(4s1 − s0)
−

4α2

3s0
< 0.
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maximize φ[
∫ 1

z01
z(q01 + q10)NdG(z) +

∫ z01
0

z(2q0)NdG(z)]. As a function of α1 and α2, φ∗a represents the

optimal per-passenger fee for both configurations.

The next step is to verify if the optimal fee φ∗a is consistent with the allocation optimal conditions

outlined in Proposition 1, more precisely, whether the necessary condition to ensure equilibrium allocation

(0 < φ∗a < φ̂) holds. It can be verified that the optimal charge falls out of the parameters’ range which

supports this allocation pattern:

φ∗a − φ̂ =
s0

4

[
s1(9α1 + 8α2)− s0(3α1 + 2α2)

s1(3α1 + 4α2)− α2s0
− 2s1

3s1 − s0

]
=

s0

4

3α1

(
s2

0 − 6s0s1 + 7s2
1

)
+ 2α2 (2s1 − s0) (4s1 − s0)

[s1(3α1 + 4α2)− α2s0] (3s1 − s0)
> 0,

which violates the condition φ < φ̂. In other words, this allocation profile is not an equilibrium. The

following proposition summarizes the result.

Proposition 2 Suppose all markets are served by duopoly airlines, and the airport is private and unregulated.

Then the airport never sets a too low per-passenger fee, φ∗ ≤ φ̂.

The striking consequence of Lemma 2 is that allocative inefficiency is eliminated once the airport is

unregulated and obtains one more management tool (fee setting) in addition to slot distribution. The

intuition is as follows.

When the airport is under a regulatory regime, the unique airport’s instrument is peak slot allocation.

When regulated fees are low, the airport finds it convenient to keep some peak slots unused to expand the

airport-pair markets, thus attracting a larger number of passengers who are willing to fly at offpeak times.

This is natural: since the fee does not change between low and high valuation passengers, the airport chooses

to expand the passenger numbers, even if this strategy leaves slots unused.

When the airport faces no fee regulation, it has two substitutable instruments to extract airlines’ surplus:

fees and slot allocation. For this allocation schedule, the airport would manipulate fees in such a way that

the given schedule is not optimal anymore. In turn, by excluding the discriminatory allocative schedule,

allocation inefficiency is also precluded.

3.3.2 High fees

Having shown that case (i) is not an equilibrium, we now turn to examine case (ii) where φ∗ > φ̂ (panel

b of Fig.1). Here, there can be up to three possible allocation patterns, depending on the market size. In

particular, adding a peak slot always generates positive marginal profit to the airport, thus constraint (11)

is binding at the optimum, from which we can derive z∗ = 2− M
N − z

∗
01. Substituting z∗ into the objective
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function and converting the constrained optimization to an unconstrained, one obtains:

max
φ

φ

[ ∫ 1

z∗
z(2q1)NdG(z)) +

∫ z∗

z∗01

z(q01 + q10)NdG(z) +

∫ z∗01

0

z(2q0)NdG(z)

]
, (17)

where z∗ and z∗01 are the roots of L01(z) = L1(z) and L01(z) = 0, respectively. From the binding constraint

G(z∗) +G(z∗01) = 2−M/N , z∗ and z∗01 can be written as:

z∗(µ, φ) =
µ

φ[2q1 − (q01 + q10)]
, (18)

z∗01(µ, φ) =
µ

φ[q01 + q10 − 2q0]
.

From the first-order condition, we can calculate φ∗ and, in the Appendix, we show that φ∗ > φ̂: the optimal

fee exceeds the critical value that supports an equilibrium, φ > φ̂. Hence, there exists a unique equilibrium

solution for case (ii). The optimal fee and allocation pattern is depicted in the following proposition.

Proposition 3 Suppose all markets are served by duopoly airlines, and the airport is private and unregulated.

The airport sets a balanced slot allocation with an optimal fee φ∗.

Proof. in Appendix.

Proposition 3 states that the airport never chooses a too low per-passenger fee such that passenger number

in peak/peak market surpasses peak/offpeak market, and that allocation is always efficient. Liberalizing per

passenger fees might thus overcome the allocative inefficiency of low per-passenger fees. The reason is clear.

The airport now has an additional pricing variable to control the airlines’ passenger number decisions, which

makes it unnecessary to reduce the number of slots employed.

4 Welfare comparison

In this section, we evaluate the impact of liberalizing per-passenger fees on welfare. Social welfare W is

represented by the sum of the airport’ profits Π, passenger surplus PS and airlines’ profits:

W = Π + PS + n1 (π01 + π10) + 2 (n2π1 + n3π0) . (19)

Since airport and airline operating costs are normalized to zero, airport profits come from total per-passenger

fees, whereas airline profits are ticket income less total per-passenger fees paid to the airport. In turn,

passenger surplus is represented by the total gross utility generated from flying minus all ticket payments.

Since monetary transfers between airlines and airport cancel out, and so do transfers between passengers and
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airlines, then social welfare equals the sum of passengers’ gross utility in all N destination markets. Hence,

the total welfare in an airport pair z, wa(z) +wb(z), amounts to the gross passenger surplus obtained under

the equilibrium seat supplies qa(z) + qb(z).

When the airport assigns the airlines of destination z to the same type of time period i ∈ {0, 1}, each flight

generates a welfare level 1
2

∫ 1

1−2qi
vsizdv. Conversely, when it assigns airlines to different time periods, the

offpeak flight generates a welfare level equal to
∫ 1−q10

1−q01−q10 vs0zdv while the peak flight yields
∫ 1

1−q10 vs1zdv.

Welfare levels thus correspond to zwij , where

wi =
(si − φ)(2si − φ)

9si
, (20)

for two flights in the same time period i ∈ {0, 1}, and

w01 =
[s1(s0 − 2φ) + s0φ] [3s1s0 + φ (2s1 + s0)]

2s0 (4s1 − s0)
2 , (21)

w10 =
s1(2s1 − s0 − φ)(6s1 − s0 + φ)

2 (4s1 − s0)
2 , (22)

for two flights in different time periods. When regulated fees are φ > φ̂, the slot configuration schedule does

not change after fees liberalization, and thus social welfare is the same when fees are regulated or not. We

thus focus on the case in which regulated fees are φ < φ̂. In particular, we investigate the difference between

social welfare with regulated and unregulated fees in relation to variations of φ. Considering the appropriate

equilibrium allocation schedule, social welfare in (19) with regulated fees when φ < φ̂ can be rewritten as:

Wreg =

∫ 1

max(z01,0)

z(w01 + w10)NdG(z) +

∫ max(z01,0)

0

z(2w0)NdG(z). (23)

Conversely, social welfare with unregulated fees can be rewritten as:

Wunreg =

∫ 1

z∗
z(2w1)NdG(z)) +

∫ z∗

z∗01

z(w01 + w10)NdG(z) +

∫ z∗01

0

z(2w0)NdG(z), (24)

We consider separately the cases where M > N or M < N .

When M > N , we compare Wreg|φ=φ̂, i.e, the lowest possible social welfare with regulated fees, with the

highest possible level of unregulated fees, Wunreg|M=2N . We get

Wreg|φ=φ̂ − Wunreg|M=2N =
Ns1

(
16s2

0 − 51s1s0 + 63s2
1

)
144 (3s1 − s0)

2 > 0,

which is a sufficient condition for every φ < φ̂ and M ∈ (N, 2N).
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Figure 2: Difference in welfare among regulated and unregulated airport

Proposition 4 Suppose M > N and regulated fees are φ < φ̂. Then per-passenger fees liberalization always

leads to a fall in social welfare.

Proposition 4 shows that, when the number of peak slot is high, social welfare falls after the liberalization of

per-passenger fees. This result differs from Picard et al. (2019), in which allocative inefficiency amounted to

both disuse of slots and a welfare diminishing effect.10 The regulated fees here improve social welfare even

if they imply an inefficient use of the airport infrastructures.

Consider next the case where M < N . In this case, the lowest possible social welfare with regulated fees

is given by Wreg|φ=φ̂,N=0, while the highest possible welfare with unregulated fees is given by Wunreg|M=N .

By comparing the two social welfares we get

Wreg|φ=φ̂,M=0 − Wunreg|M=N ∝1024s11
0 − 26052s1s

10
0 + 279039s2

1s
9
0 − 1605773s3

1s
8
0+

5186880s4
1s

7
0 − 8507850s5

1s
6
0 + 3122311s6

1s
5
0 + 9174039s7

1s
4
0−

8388654s8
1s

3
0 − 2585052s9

1s
2
0 + 2021688s10

1 s0 + 593568s11
1 .

For convenience, we rename s1 = ks0 where k > 1 represents the gain from traveling at peak rather than

offpeak time. In this way, we obtain that Wreg|φ=φ̂,M=0 − Wunreg|M=N > 0 for 1 < k ≤ 1.476.

Proposition 5 Suppose M < N and regulated fees are φ < φ̂. Then per-passenger fees liberalization leads

to a fall in social welfare when the difference in qualities between flying at peak or offpeak times is not too

high.

10In Picard et al. (2019), inefficiency was determined by the comparison with the allocation configuration chosen by a public
airport.

14



Figure 2 shows the difference in welfare levels between a regulated and unregulated airport as a function

of k. Compared to Proposition 4, here there is no allocative inefficiency because, given M < N , the airport

uses all the available peak slots. Therefore unregulated per-passenger fees have no effect on the efficient use

of the airport infrastructure. Nonetheless, liberalizing per-passenger fees might improve social welfare, if the

gain from flying at peak times, measured by k, is sufficiently high.

5 Conclusion

In this paper we have carried forward the problem of allocative inefficiency. Starting from the findings of

Picard et al. (2019) for airports with regulated per-passenger fees, we have evaluated the welfare effects of

liberalization. Whenever unregulated per-passenger fees have a positive effect on an efficient use of airport

infrastructure, it worsens the welfare level. Liberalization might have positive effects on welfare only if the

number of peak slots available is relatively limited, and the passengers’ benefit from flying at peak times is

sufficiently higher than the offpeak alternative. We hope, with our findings, to provide guidance to airport

regulators.
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Appendix

Maximization by slots

Using n0 = 1− n01 − n1, the Lagrangian function can be written as

L = φ

∫ z̄

z

z[2q0(1− n01 − n1) + (q01 + q10)n01 + 2q1n1]NdG(z)− µ[

∫ z̄

z

(n01 + 2n1)NdG(z)−M ]

To ease the exposition, we suppress the z argument in n. µ is the Kuhn-Tucker multiplier associated

with the capacity constraint. Note that the capacity constraint can be re-formulated as µ
∫ z̄
z

((n01 +2n1)N −

M)dG(z), we then rewrite Lagrangian function in a more compact form:

L =

∫ z̄

z

φz[2q0(1− n01 − n1) + (q01 + q10)n01 + 2q1n1]− µ
(
n01 + 2n1 −

M

N

)
NdG(z). (25)

Notice that nk are continuous functions in the range [0,1], and eventually take values of either 0 or 1 because

the objective function and constraint is linear in {n0, n01, n1}.

Using pointwise maximization with respect to n01 and n1, one gets

L01 =zφ(q01 + q10 − 2q0)− µ = 0,

L1 =2zφ(q1 − q0)− 2µ = 0,

The second order derivative of airport’s profit with respect to φ is:

∫ z̄

z

−2

(
2n0

3s0
+

2n1

3s1
+

2n01s1

s0(4s1 − s0)

)
zNdG(z) < 0, (26)

for nk(z) = 1 and n′k = n′′k = 0 where k 6= k′ 6= k′′ ∈ {0, 1, 01}.

Proof of Proposition 3

The first-order condition is:

π2,φ =
s3

0

(
−
(
s1

(
M2 − 4MN + 2N2

)
+ 4N2φ

))
+ s1s

2
0

(
s1

(
3M2 − 12MN − 4N2

)
− 4φ

(
M2 − 4MN − 4N2

))
6Ns0 (s0 − 4s1) 2s1

+
2s2

1s0

(
s1

(
−M2 + 4MN + 12N2

)
+ 8Mφ(M − 4N)

)
− 12s3

1φ(M − 2N)2

6Ns0 (s0 − 4s1) 2s1

= 0.
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Solving with respect to φ, we get

φ∗ =
s0s1

[
2s2

1

(
12N2 + 4MN −M2

)
− s1s0

(
4N2 + 12MN − 3M2

)
− s2

0

(
2N2 − 4MN +M2

)]
4 [3s3

1(2N −M)2 + 4s2
1s0M(4N −M)− s1s2

0 (4N2 + 4MN −M2) +N2s3
0]

. (27)

We then compare φ∗ and φ̂, obtaining

φ∗ − φ̂ =
s0s1 (4s1 − s0) ∆1

4 (3s1 − s0) ∆2
,

where :

∆1 = M(4N −M)(s1 − s0)(3s1 − s0) + 6N2s1(2s1 − s0),

∆2 = 3s3
1(2N −M)2 + 4s2

1s0M(4N −M)− s1s
2
0

(
4N2 + 4MN −M2

)
+N2s3

0

A quick glance shows that ∆1 > 0, while ∆2 > 0 because the last part is positive, while the first three parts

are:

s1s
2
0

(
M2 − 4N2 − 4MN

)
+ 3s3

1(M − 2N)2 + 4s2
1s0M(4N −M) >

s1s
2
0

[(
M2 − 4N2 − 4MN

)
+ 3(M − 2N)2 + 4M(4N −M)

]
= s1s

2
0 · 8N2 > 0.

Hence φ∗ > φ̂.
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