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Abstract

I microfound endogenous growth through neoclassical technologies with substi-

tutable inputs created by monopolistically competitive innovators. Investment deliv-

ers innovations of declining profitability, but increasing labor force generates growth

depending on structural technological parameters that determine the elasticities of

profits and output relative to the mass of inputs. With a Cobb-Douglas technology in

labor and a CES aggregator of inputs growth declines with the substitutability between

inputs, with a nested CES technology growth vanishes as long as the substitutability

between labor and inputs is less than unitary, and with a Diewert technology growth

is sustainable for a high share of inputs in production.
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Innovation-driven growth is the fruit of technology and appropriate market

conditions. However, the relation between the aggregate production function

and growth has been studied only under knife-edge assumptions. Endogenous

growth models à la Romer (1990) and Barro and Sala-i-Martin (BS, 2004, Ch. 6)

generate a balanced growth path under a Cobb-Douglas technology and a con-

stant population level. Semi-endogenous growth models introduced by Jones

(1995) and based on the same technological assumptions have avoided the scale

effects in population by introducing “fishing-out”effects in the creation of new

ideas: such externalities are crucial in determining the link between income

growth and population growth in the long run also in more general models

(Peretto, 1998; Cozzi, 2017). In this note I argue that a balanced growth path

does not need to rely on knife-edge technological conditions, and it is the same

nature of neoclassical technologies for the production of final goods that de-

termines whether investment in the creation of new inputs by monopolistic

providers can create sustainable growth.

I extend the canonical Barro and Sala-i-Martin model with population growth

and a general neoclassical technology featuring substitutability between inputs,

and I analyze monopolistic competition between their producers following re-

cent advances on its foundations (Bertoletti and Etro, 2016, 2022; Parenti et al.,

2017; Etro, 2020). Substitutability between inputs, which is absent in standard

models based on Romer (1987, 1990), implies that the marginal productivity

of each new input decreases with the use of other inputs. Essentially, ideas are

non-rival but may be substitutes: for instance, different dirty and clean tech-

nologies, different vaccines and treatments or different apps for cloud services

are imperfect substitutes but they jointly contribute to increase the aggregate

productivity. As a consequence, a given investment produces ideas that become

gradually less profitable for a given market size, but an expanding market size

can prevent the decline of growth. The mechanism and the long run growth rate

depend structural parameters derived from the technological microfoundation.
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To exemplify the nature of the results I start by using a basic Cobb-Douglas

production function of labor and an aggregator of intermediate goods, where

the latter satisfies Constant Elasticity of Substitution (CES),2 nesting both the

classic Romer (1990) technology with independent inputs and a neoclassical

technology with perfectly substitutable intermediate inputs à la Solow (1956).

Between these extreme cases, this specification allows for intermediate forms of

imperfect substitutability, and I show that the long run growth of per capita

income decreases in the same degree of substitutability between inputs and in-

creases in their share in production: intuitively, the model generates a decreasing

marginal profitability of innovation which reduces, but does not eliminate, the

growth potential when population is expanding (unless the inputs are perfect

substitutes and growth vanishes in the long run as in the Solow model).

This example can be extended to any more general technology satisfying

constant returns to scale (CRS) in labor and inputs, providing either vanishing

growth or a positive long run growth rate depending on two long run elasticities,

namely those of profits and output with respect to the mass of inputs. Two ad-

ditional unexplored examples illustrate the type of results that can emerge. In

the case of a nested CES production function, which allows one to parametrize

the elasticity of substitution between labor and a CES aggregator of intermedi-

ate goods, growth vanishes whenever this elasticity is less than unitary. Instead,

in the case of a generalized linear technology (Diewert, 1971), long run growth is

sustainable and depends on a structural parameter reflecting the share of inputs

in production.

While I am not aware of microfoundations of semi-endogenous growth mod-

els through general technologies for final goods, some works have moved be-

yond standard microfoundations in a similar spirit (Bucci and Matveenko, 2017;

Boucekkine et al., 2017; Peretto, 2018; Latzer et al., 2020). In particular,

2This is the technology suggested in BS (2004, Ch. 6) but, as far as I know, unexplored in

the case of positive population growth.
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Boucekkine et al. (2017) and Latzer et al. (2020) have recently studied en-

dogenous growth models departing from the usual CES microfoundation of

preferences and analyzing respectively indirectly and directly additive prefer-

ences, which generate variable markups. Contrary to these works, I focus on

the microfoundation of technology, and show that demand systems for inputs

generated by general aggregate production functions lead to novel results for the

growth process. Related advances in the literature on macroeconomic models

with endogenous entry and endogenous markups are discussed in Bilbiie et al.

(2019), Cavallari (2013), Colciago and Rossi (2015), Dixon and Savagar (2020),

Piersanti and Tirelli (2020) and elsewhere, though none of these works studies

endogenous growth. In earlier work I have explored the role of technology in dy-

namic stochastic general equilibrium models with optimizing consumers (Etro,

2020), but with a focus on business cycle implications around a stationary equi-

librium and without population growth.

In what follows Section 1 presents the general model discussing a basic ex-

ample with a Cobb-Douglas production function and the case of a general CRS

technology, Section 2 moves to a nested CES production function and Section

3 introduces a generalized linear production function. Finally, Section 4 con-

cludes.

1 The model

Following the canonical Barro and Sala-i-Martin model with expanding variety

of products (BS, 2004, Ch. 6), I consider a competitive final-good sector with

a constant returns to scale technology in the labor force and a continuum of

intermediate goods in [0, N ] produced by monopolistic innovators. Labor grows

at a constant rate n > 0. The final good is the numeraire used for production

of inputs at unitary cost, for the creation of new inputs at the fixed cost η for

each innovaton, and for consumption. The economy is populated by identical
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and infinitely living households with utility:

U =

∫ ∞
0

e−ρt log cdt (1)

where ρ > 0 is the time preference rate and c individual consumption. This

implies the standard Euler equation for individual consumption growth:

g = r − ρ

where r is the return rate. My focus will be on a balanced growth path in which

the interest rate will be constant.

I consider a neoclassical production function satisfying CRS:

Y = F (X,L)

where Y is output, L is the labor force, X is an infinite dimensional input profile

in [0, N ] which is a Lebsegue-measurable mapping into R+, and F is assumed

continuous, strictly quasi-concave and symmetric in X. The intensive form for

per capita output y = Y/L can be defined on the basis of the per capita input

xi = Xi/L as:

y = f(x) (2)

where f(x) ≡ F (X/L, 1) by CRS. As long as the marginal productivity of an

input depends on its quantity only, as in Romer (1990), or on an aggregator of all

the inputs that is taken as given under monopolistic competition, we can easily

compute the pricing rules and, through that the profits of the firms and the

equilibrium production and growth. I will start by presenting a simple example

of this case based on a Cobb-Douglas technology in labor and a CES aggregator

of inputs, and then I will consider more general technologies.

1.1 A Cobb-Douglas example

Consider the following Cobb-Douglas production function in extensive form:

Y =

(∫ N

0

Xσ
j dj

)α
σ

L1−α
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where α ∈ (0, 1) reflects the relative importance of inputs in production and

σ ∈ (α, 1) reflects their substitutability. BS (2004, Ch. 6, Problem 6.2) have

considered this specification without exploring the extension with population

growth, whose implications have not been noticed as far as I know. The ex-

treme case with σ = α brings to the production function Y =
∫ N
0
Xα
j L

1−αdj

used by Romer (1990), BS (2004) and at the basis of most of the endogenous

growth literature, where the inputs (and their demands) are independent be-

tween each other. Instead, the other extreme case σ = 1 brings to a standard

neoclassical production function where the inputs are perfectly substitutable

and what matters is their total amount X =
∫ N
0
Xjdj in a production function

as Y = XαL1−α. Intermediate cases are my main interest.

The intensive form reads as:

y =

(∫ N

0

xσj dj

)α
σ

(3)

With this technology the inverse demand of input i is:

pi =
αxσ−1i(∫
xσj dj

)1−ασ
Under monopolistic competition each input producer sets either prices or quan-

tities to maximize profits πi(pi − 1)xiL taking as given the aggregator. This

delivers the constant price:

p =
1

σ

allowing us to solve for the equilibrium production of each firm as:

x(N) =
(
ασN

α−σ
σ

) 1
1−α

which declines in the mass of inputs N under our assumption 0 < α < σ < 1.

Accordingly, the symmetric profits of each producer are:

π(N) =

(
1− σ
σ

)(
ασN

α−σ
σ

) 1
1−α

L (4)
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and they also decrease when the mass of inputs used in production increases

(while they are constant in standard endogenous growth models à la Romer).

Since all producers are identical, these are also the profits of the marginal pro-

ducer deciding whether to enter or not. The property of decreasing marginal

profitability is what limits growth in the long run, as the property of decreasing

marginal productivity of capital is what limits growth in neoclassical models of

capital accumulation.

The free entry condition:
π(N)

r
= η (5)

implies that the interest rate can be constant in the long run (to insure constant

consumption growth through the Euler equation) if and only if the growth rate

of the mass of intermediate goods satisfies:

Ṅ

N
=
σ(1− α)n
σ − α (6)

Since income per capita in a symmetric equilibrium must be:

y(N) = N
α
σ x(N)α = (7)

= (ασ)
α

1−α N
α
σ+

α(α−σ)
σ(1−α)

after using the equilibrium production of the inputs, the long run growth rate

can be derived from (6) as follows:

g =
α(1− σ)n
σ − α (8)

As in semi-endogenous growth models, this rate is linear in the population

growth rate. What is new is that the growth rate increases in α, which represents

the share of intermediate goods in production, and decreases in σ, due to a lower

marginal profitability of innovation (and therefore lower investments). As well

known, in the presence of population growth, per capita income growth becomes

explosive in the Romer case (σ = α) and remains null in the neoclassical Solow

case (σ = 1). Intuitively, investment generates sustainable growth when it
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creates new inputs that are not identical to the existing ones (as, instead, they

are in the neoclassical case of new capital), but are imperfect substitutes of the

existing inputs, and therefore enrich the technological frontier. As I will show

next, similar implications can apply beyond this example.

1.2 General aggregate production functions

I now provide a more general characterization of the long run growth rate based

on recent advances in the theory of monopolistic competition (see Bertoletti

and Etro, 2016, 2017; d’Aspremont and Dos Santos Ferreira, 2016; Parenti et

al., 2017; Bertoletti et al., 2018). Few technical assumptions are needed to

deal with general CRS technologies with a continuum of intermediate goods.

In particular, following Parenti et al. (2017, pp. 92-93), I assume that the

functional f is Fréchet differentiable in x ∈L2, in the sense that there exists a

unique function D(xi,x) such that, for all h ∈L2, the equality:

f(x+ h) = f(x) +
N∫
0

D(xi,x)hidi+O (‖h‖2)

holds, where ‖.‖2 is the L2-norm (Dunford and Schwartz, 1988) and D(xi,x)

is the marginal productivity of input i, which is assumed twice continuously

differentiable in xi with ∂D(xi,x)/∂xi < 0. Denoting the symmetric per capita

output f̃(x,N) ≡ f(xIN ) where IN is the indicator of N v R+, I assume this

to be continuous and differentiable in N with ∂f̃(x,N)/∂N > 0 for any x.

The inverse demand of input i is:

pi = D(xi,x)

Since x is defined up to a zero measure set, the cross elasticity is null, but

substitutability between inputs holds when an increase of the mass of inputs

used in positive quantity reduces the marginal productivity and the inverse

demand of the other inputs. Denoting the inverse demand under symmetry as
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D̃(x,N) ≡ D(x, xIN ), I assume this to be continuous and differentiable in N

with D̃N (x,N) < 0 for any x.

Monopolistic competition generates prices:

p =
ε(x,N)

ε(x,N)− 1 with ε(x,N) ≡ −D(x, xIN )
xD′(x, xIN )

(9)

where the symmetric elasticity of substitution for the mass of inputs (due to

the symmetry of the production function) is assumed to satisfy ε(x,N) > 1

(see Parenti et al., 2017, pp. 95-6 for the related conditions). This elasticity

is actually a constant in standard models (including our earlier example based

on a Cobb-Douglas technology) and in the example of Section 2 based on a

nested CES technology. However, in Section 3 I will present an example based

on a generalized linear technology where this elasticity is decreasing in the mass

of inputs and approaches a constant only in the long run. Such asymptotic

convergence to a finite constant, namely ε(x,∞)→ ε ∈ (1,∞), is the assumption

I will adopt in general: this is necessary for a balanced growth path because

it insures a constant positive markup in the long run, which is needed to feed

profitability of investment in the creation of new inputs.3

Given the pricing rule, the production of each input in the long run is defined

by the market clearing condition:

D̃(x,N) =
ε

ε− 1

Since the left hand side decreases in both x and N (due to concavity of the

production function and the assumption on substitutability of inputs), the sym-

metric equilibrium quantity x(N) declines in the mass of inputs. Its elasticity is

defined in absolute value by the function β(N) = − d ln x
d lnN , and a balanced growth

path with positive population growth can only exist if β(∞) → β ∈ (0,∞),

which is the natural assumption I will make in what follows. Notice that the

3Translog technologies lead to elasticities of substitution that increase indefinitely with the

mass of inputs (see Bertoletti and Etro, 2016) which makes long run growth unsustainable.
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profit elasticity is null in the Romer model, and it was a constant in the earlier

example based on a Cobb-Douglas example. However, in both the examples of

Section 2 based on a nexted CES technology and Section 3 based on a gener-

alized linear technology, the profit elasticity β(N) will change with the mass of

inputs and approach a constant only in the long run.

Given the equilibrium production of each monopolist, its long run profits

become:

π(N) =
x(N)L

ε− 1

with the same long run elasticity β, and the free entry condition π(N) = ηr

implies that the interest rate can be constant in the long run if and only if

β(Ṅ/N) = n implying:
Ṅ

N
=
n

β
(10)

Finally, equilibrium output is:

y(N) = f̃(x(N), N)

and its elasticity with respect to the mass of inputs is defined as ϑ(N) with

ϑ(∞) → ϑ > 0. Clearly, if ϑ = 0 growth cannot be sustainable in the long

run, a case exemplified in Section 2 under a nested CES technology for some

parameter values. Instead, if ϑ > 0 due to relevant gains from variety in the

production function, growth is possible: this case will emerge in Section 3 under

a generalized linear technology, when the output elasticity will depend on the

mass of inputs and approach a positive constant in the long run.

When ϑ > 0 the growth rate of income is:

g = ϑ
Ṅ

N

and, using (10), it approaches a positive constant:

g =
ϑn

β
(11)
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which depends on population growth through the two structural long run elas-

ticities. To close the model, the Euler condition and the resource constraint

deliver the equilibrium interest rate and per capita consumption.

In practice, economic growth is driven by population growth through the

long run elasticity β, which represents the extent to which new ideas become

less profitable (or harder to get) when there are more of them, and the long run

elasticity ϑ, which represents the degree of gains from variety in production (or of

increasing returns to scale in ideas). They depend on technological conditions.

For instance, in the Cobb-Douglas example the elasticity of profits (4) and

output (7) are:

β =
σ − α
σ(1− α) and ϑ =

α(1− σ)
σ(1− α)

providing the growth rate (8) in function of the structural parameters α and σ.

2 A nested CES production function

Constant long run growth can be a knife-edge outcome depending on precise

technological conditions. To see why this is the case also in our environment,

I now generalize further the Cobb-Douglas example moving to a nested CES

technology (à la Arrow et al. 1961) in labor and a CES aggregator of the

intermediate inputs. As before, this delivers an elasticity of substitution between

inputs which is perceived as constant by monopolistically competitive producers,

but it also deliver elasticities of profits and output that depend on the mass of

inputs. Their long run behavior determines the growth potential.

In particular, let us consider a nested CES production function represented

in extensive form as follows:

Y =
[
(1− α)L−ψ + αH−ψ

]− 1
ψ with H ≡

(∫ N

0

X
θ−1
θ

j dj

) θ
θ−1

The parameter ψ > −1 is inversely related to the elasticity of substitution

between labor and intermediate goods, with a Cobb-Douglas technology in the
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limit case where ψ → 0, a Leontief technology in the limit where ψ → ∞, and

perfect sustitutability between labor and inputs for ψ → −1. The parameter

α ∈ (0, 1) determines always the shares of intermediate goods and labor in total

production. Finally, θ > 1 parametrizes the elasticity of substitution between

varieties of intermediate goods. The intensive form reads as follows:

y =

1− α+ α(∫ N

0

x
θ−1
θ

j dj

)−θψ
θ−1
−

1
ψ

(12)

In this case the inverse demand of inputs is:

pi = αx
− 1
θ

i

1− α+ α(∫ N

0

x
θ−1
θ

j dj

)−θψ
θ−1
−

1
ψ−1(∫ N

0

x
θ−1
θ

j dj

)−θψ
θ−1 −1

and the monopolistic competition price (maximizing profits taking as given the

aggregator of intermediate inputs) can be derived as:

p =
θ

θ − 1

Given this, the symmetric equilibrium production of inputs can be computed as

follows:

x(N) =

(
α(θ − 1)

θ

) 1
1+ψ

N
−(θψ+θ−1)
(1+ψ)(θ−1)

1− α
1

1+ψ

(
θ
θ−1

) ψ
1+ψ

N
−ψ

(1+ψ)(θ−1)

1− α


1
ψ

which is always decreasing in the mass of firms when ψ > 0. Its elasticity can

be computed as:

β(N) =

θ − 1 + θψ −
[
α

−1
1+ψ

(
θ
θ−1

) ψ
1+ψ

N
ψ

(1+ψ)(θ−1) − 1
]−1

(1 + ψ)(θ − 1)

which converges to a constant. However, the equilibrium per capita income is:

y(N) =
[
1− α+ αN

−θψ
θ−1 x(N)−ψ

]− 1
ψ

whose elasticity can be computed as:

ϑ(N) =
α

1
1+ψ

[
θ
θ−1 − β(N)

]
(
θ−1
θ

) ψ
1+ψ N

ψ
(1+ψ)(θ−1)
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and this elasticity converges to zero for any ψ > 0, delivering zero long run

growth in spite of increasing population. Instead, when labor and intermediate

goods are highly substitutable (ψ < 0) growth tends to explode and the model

lacks a balanced growth path. Long run growth is sustainable only in the Cobb-

Douglas case, which is consistent with our initial example. To verify this, notice

that the limit case of ψ → 0 implies the elasticities:

β =
θ − 1− α

1−α
θ − 1 and ϑ = α

(
θ

θ − 1 − β
)

delivering the growth rate:

g =
αn

θ(1− α)− 1

as long as this is positive, which requires high substitutability between interme-

diate goods.4

3 A Diewert production function

I finally present an example of a different CRS technology due to Diewert (1971)

that generates positive long run growth. As far as I am aware, this type of

technology has not been used in endogenous growth investigations.5 It delivers

an elasticity of substitution between intermediate inputs that is not constant,

but decreases in the mass of inputs. Nevertheless this elasticity and therefore

the monopolistic competition prices converge to a constant, as do the other

relevant elasticities, leading to a balanced path of endogenous growth.

Consider the generalized linear production function:

Y =

[∫ N

0

(
γXi +

∫ N

0

√
XiXjdj

)
di

]α
L1−α

4The growth rate corresponds to the one for the Cobb-Douglas example after converting

the parameters with σ = 1− 1/θ.
5Applications of a more general Qmor specification for preferences are available in trade

(Feenstra, 2018).
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with α < 1/2 reflecting as usual the share of intermediate goods in total produc-

tion and γ > 0 parametrizing substitutability between these inputs. In intensive

form, this simplifies to:

y =

[∫ N

0

(
γxi +

∫ N

0

√
xixjdj

)
di

]α
(13)

The inverse demand of inputs is:

pi =
α
(
γ + 1

2
√
xi

∫ N
0

√
xjdj

)
[
γ
∫ N
0
xjdj +

∫ N
0

∫ N
0

√
xkxjdjdk

]1−α
Under monopolistic competition each input provider i selects the quantity of

input xi taking as given the aggregators that affect demand. This provides the

relevant elasticity ε(x,N) = 2 + 4γ
N which converges to a constant for N →∞.

The monopolistic price converges therefore to p = 2 in the long run. The

equilibrium production of inputs can be computed as:

x(N) =

[
α(2γ +N)

4(γ +N)
N1−2(1−α)

] 1
1−α

with elasticity:

β(N) = 2−
1− γN

(2γ+N)(γ+N)

1− α

which clearly converges to β = 2 − 1
1−α in the long run and is positive under

our assumptions.

The equilibrium income in per capita terms is:

y(N) = [N(γ +N)x(N)]
α

whose elasticity is instead:

ϑ(N) = α

(
2− γ

γ +N
− β(N)

)
and converges to ϑ = α

1−α . Then, the long run growth rate can be derived as:

g =
αn

2(1− α)− 1 (14)
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Since the substitutability between intermediate inputs and between labor and

intermediate inputs approach asymptotically finite numerical values, the only

relevant technological parameter is the one reflecting the share of inputs in pro-

duction, and growth increases in α due to higher importance of the intermediate

goods in production.

4 Conclusion

Technological conditions shape the relation between population growth and in-

come growth in models of endogenous technological progress. While this relation

has been implicit in semi-endogenous growth models based on externalities in-

duced by the mass of firms on aggregate productivity (Jones, 1995), it can be

made explicit under general neoclassical CRS production functions. What is

needed is to abandon the independence between accumulating inputs assumed

by Romer (1990) and BS (2004) and inherited by most of the subsequent en-

dogenous growth literature, and to take into account input substitutability.

Further avenues for future research appear interesting. First, one may want

to consider the welfare implications of long run growth. Notice that the con-

ventional assumption of symmetric production functions implies that the order

in which new inputs are created and adopted is irrelevant.6 But in practice

different inputs contribute differently to aggregate production, and the choice

of the order in which new inputs are created by the market is crucial to explain

economic development. Such a choice depends on the profitability of inputs and

not on their contribution to future innovations, and can be in conflict with the

choice that a social planner would make in the interest of consumers: further in-

vestigations of endogenous product introduction under asymmetric technologies

could be useful.7 Second, the current model considered population growth as

6The same applies to Schumpeterian models of growth (Aghion and Howitt, 1992), where

there is a natural order in which new (better) inputs are created.
7A preliminary exploration is in Bertoletti and Etro (2022).
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an exogenous determinant of the rates of technological progress and growth, but

it would be interesting to analyze the opposite channel where economic growth

affects fertility. Finally, the microfoundation based on more general aggregate

production functions, and possibly some of the functional forms presented here,

could be used for quantitative evaluations of endogenous growth models.
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