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Abstract

The COVID-19 pandemic has underscored the need for modeling tools that
account for the spatial and institutional heterogeneity underlying real-world epi-
demic dynamics. We develop a spatially structured agent-based model (ABM)
in which decentralized health authorities (HAs) allocate costly treatments under
local budget constraints to manage the spread of an infectious disease. Indi-
viduals are distributed across a grid of locations, with contagion governed
by discrete-time Susceptible-Infected-Recovered (SIR) dynamics and spatial
spillovers through local interactions. At each time step, HAs choose treatment
intensity endogenously based on local infection levels, available resources, and
pricing conditions. We analyze how key factors—such as treatment efficacy,
pricing schemes, and initial outbreak distribution—shape both local and aggre-
gate outcomes. In addition to a benchmark case with homogeneous pricing,
we explore a parsimonious pricing scheme where prices vary across cells. Ana-
lytical results identify the threshold conditions for disease eradication, while
simulations show how decentralized decisions and spatial feedback can gener-
ate persistent inequalities in infection and treatment. Our findings highlight the
importance of integrating spatial structure, economic constraints, and pricing
design in epidemic policy modeling.
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1 Introduction

The global experience with COVID-19 and other recent epidemics has underscored
the urgent need for robust, flexible frameworks to design and evaluate public health
interventions under uncertainty and constraints. In particular, the emergence of inno-
vative but costly pharmaceutical treatments has posed challenging questions for health
authorities tasked with containing the spread of infectious diseases while managing
scarce budgetary resources.

Traditional epidemiological models, typically grounded in mean-field approaches such
as deterministic SIR (Susceptible-Infected-Recovered) systems, have provided useful
insights into disease propagation and basic reproduction thresholds. However, such
models often fail to capture the spatial, behavioral, and institutional heterogeneity that
shapes real-world epidemic dynamics and policy responses. As highlighted by Hunter
et al. [1], standard equation-based models underestimate the role of local interactions
and decentralized behavioral responses, leading to oversimplified policy prescriptions.
In recent years, there has been increasing interest in agent-based modeling (ABM)
approaches for studying epidemic control, particularly in contexts characterized by
local coordination failures, heterogeneous agents, and spatially distributed interactions
[2]. These models allow for a bottom-up representation of complex adaptive sys-
tems, enabling researchers to analyze non-linear contagion effects, policy diffusion, and
dynamic adaptation to public health interventions. Delli Gatti et al. [3] emphasize the
role of behavioral feedback and bounded rationality in epidemic dynamics, proposing
ABMs as essential tools for stress-testing policy robustness in uncertain environments.
Beyond behavioral dynamics, agent-based models are particularly valuable for their
ability to capture spatial interactions, which are essential for understanding disease
transmission across heterogeneous geographic areas or interconnected networks [4].
ABMs have been widely used to evaluate the impact of travel restrictions, localized
interventions, and individual mobility patterns, highlighting how factors like super-
spreading locations and socioeconomic mobility disparities shape epidemic outcomes
[4]. Moreover, ABMs can explicitly represent heterogeneous populations, where agents
vary in e.g. infectivity, or responsiveness to interventions—features often oversimplified
in compartmental models [5]. Modeling individual-level decision-making and interac-
tions also enables the study of emergent collective behaviors, such as compliance with
public health guidelines or the spread of misinformation, which can significantly influ-
ence epidemic dynamics [6].

With increasing computational power, ABMs are now applied at larger scales, from
urban outbreaks to global pandemic simulations, offering insights into the effectiveness
of non-pharmaceutical interventions (NPIs) and vaccination strategies [7, 8]. Their
flexibility in integrating diverse data sources—including demographic, behavioral, and
mobility data—makes ABMs a powerful tool for public health planning and real-time
policy evaluation.

Employing a different methodological approach, Dubois and Magnac [9] introduce a
dynamic optimization framework for epidemic management, focusing on a centralized
planner allocating costly treatments under a budget constraint. Their contribution
is notable in highlighting the trade-off between early aggressive intervention and
intertemporal budget smoothing. However, their model does not account for spatial



contagion nor decentralized optimization. In contrast, our framework embeds these
key elements, showing how localized decision-making and neighborhood spillovers fun-
damentally reshape the effectiveness and cost-efficiency of epidemic control.

Further research has explored the importance of network structure and contact pat-
terns in shaping epidemic diffusion. For instance, Ajelli and Merler [10] and Ferguson
et al. [11] examine how granular contact networks alter epidemic forecasts and the
optimal allocation of limited treatment or vaccination resources. More recent agent-
based modeling studies have shown that spatial and institutional heterogeneity can
produce unintended consequences and tipping points even under well-targeted inter-
ventions. For instance, Thomas et al. [12] demonstrate significant local variation in
epidemic timing and severity across metropolitan areas, despite consistent average
trends. Likewise, Kustudic et al. [13] reveal that contagion dynamics differ markedly
depending on the source location and network structure, highlighting how small struc-
tural variations can amplify epidemic outcomes beyond average-level predictions.
Our work contributes to this literature by combining a dynamic agent-based SIR
model with decentralized treatment decisions, spatial interactions via a Moore neigh-
borhood, and heterogeneous pricing schemes. In doing so, we follow recent calls to
move beyond static or representative-agent frameworks and toward spatially explicit
models that endogenize both epidemiological dynamics and economic constraints [14].
The pricing dimension of our model relates to a growing strand of literature on dif-
ferential access to health innovations. In practice, pharmaceutical companies often set
prices based on willingness-to-pay, income levels, or effectiveness, a strategy that can
introduce inequities when public budgets are constrained. Studies such as Danzon and
Towse [15] and Moon et al. [16] have analysed tiered pricing and its implications for
access to medicines in low- and middle-income countries. However, few epidemic mod-
els incorporate pricing decisions as endogenous factors that interact with local budget
constraints and infection dynamics.

Empirical research on the political economy of global health has confirmed that
inequities in access to treatments and vaccines—including pricing-based dispari-
ties—have real consequences for public health outcomes. A comprehensive study by
Gleeson et al. [17] documents how structural inequities in access to COVID-19 health
products undermine disease containment and exacerbate socioeconomic vulnerability.
Similarly, modeling studies like Gozzi et al. [18] show that delayed or uneven dis-
tribution of vaccines significantly lowers herd immunity in lower-income countries,
amplifying both health and economic costs.

Our analysis builds on this literature by endogenizing a parsimonious pricing mech-
anism, where price varies across locations according to the local benefit of recovery
and efficacy, but without respect to actual fiscal capacity. We show how such pricing
can distort treatment incentives, reducing overall treatment intensity and increasing
spatial inequality, thus undermining both epidemiological effectiveness and equity.

In this paper, we develop an agent-based and spatially structured model of epidemic
management in which decentralized health authorities (HAs) operate under resource
constraints. The population is distributed across a toroidal grid of locations (cells),
each with its own HA facing a budget limitation. At every discrete time step, each
HA determines the fraction of locally infected individuals to be treated using an



innovative but costly pharmaceutical intervention. Effective treatment with the inno-
vative medicine cures and immunizes patients. The disease propagates through a
discrete-time SIR dynamic, where the local transmission rate depends endogenously
on the effort spent on treatment, and spatial interactions follow a Moore neighbor-
hood scheme, allowing infections to spread across adjacent cells. We model a generic
infectious disease characterized by relatively slow contagion dynamics, akin to Hep-
atitis C, rather than fast-spreading pathogens like COVID-19.

Our modeling framework introduces several key innovations with respect to the exist-
ing literature. First, it incorporates a decentralized optimization mechanism: treatment
intensity is chosen endogenously by each HA based on the current level of infection
and subject to a local budget constraint. Second, the model explicitly includes spatial
externalities, whereby the infection in one cell may influence epidemiological outcomes
in neighboring regions, creating feedback loops that shape aggregate dynamics. Third,
we consider heterogeneous pricing strategies for the innovative treatment. In particu-
lar, we contrast a benchmark case of uniform pricing with a parsimonious scheme in
which the price charged in each cell depends on local recovery benefits and treatment
efficacy—without knowledge of the HA’s budget capacity.

Using a combination of analytical and computational methods, we derive several key
results. Analytically, we identify the conditions under which the disease-free equi-
librium is locally stable in both isolated and interacting settings, characterizing a
critical threshold for treatment intensity that guarantees eradication. Computation-
ally, we show that when treatment is effective and prices are fixed, decentralized
optimization leads to a rapid reduction in infections across the grid, although spa-
tial spillovers generate heterogeneous and persistent infection patterns. In contrast,
parsimonious pricing strategies—intended to reflect local benefit-cost trade-offs—can
lead to counterproductive outcomes: higher prices in more vulnerable or treatment-
effective regions may suppress treatment effort, thereby amplifying infection rates and
increasing inequality in health outcomes across regions.

The simulations also reveal that limited treatment efficacy slows down the system’s
convergence to the disease-free state and can generate widespread persistence of the
infection, particularly when initial outbreaks occur in highly connected or poorly
treated areas. The joint effect of spatial transmission, budget constraints, and pricing
heterogeneity produces complex epidemic trajectories, in which early under-treatment
in certain cells acts as a self-reinforcing mechanism for disease diffusion. Even when
average infection rates fall, variance across locations remains high unless pricing is
coordinated and treatment is broadly accessible.

Our findings contribute to current debates on the optimal design of decentralized
health responses, the economic trade-offs involved in pharmaceutical pricing, and the
broader consequences of spatially heterogeneous epidemic dynamics. In addition, the
combination of agent-based modeling with analytical optimization techniques offers
a novel methodological contribution to the growing literature relying on this hybrid
approach. Such combination allows to enrich behavioral rules or local decision mecha-
nisms. In these hybrid approaches, closed-form solutions or optimal strategies—derived
from analytical models—are embedded into agents’ behavior within an ABM frame-
work. This allows for the exploration of dynamic macro outcomes arising from locally



optimal but decentralized decisions. For instance, Gatti et al. [19] integrate optimal
firm investment rules into an agent-based macro model to study financial instability,
while in [20] individuals populating an overlapping generation economy locally opti-
mize the allocation of their labor income between private goods consumption or the
environment. These methods enable researchers to explore how theoretically grounded
optimal solutions perform in complex, heterogeneous environments with interactions,
feedback loops, and spatial spillovers. Our work contributes to this literature by incor-
porating a locally optimal treatment rule—derived from a static optimization problem
subject to budget constraints—into the decentralized dynamics of a spatial epidemic
ABM.

Our modeling framework can be extended in several directions, including behavioral
learning by HAs, strategic coordination among jurisdictions, or supplier-side optimiza-
tion of pricing under incomplete information. In general, our work emphasizes the
importance of integrating spatial structure, institutional heterogeneity, and decentral-
ized constraints into epidemic policy modeling.

The remainder of the paper is structured as follows: Section 2 introduces the core
structure of the model, presenting the baseline SIR dynamics (without and with
spatial contagion) and the formulation of the local optimization problem faced by
health authorities. Section 3 details the implementation of the agent-based simula-
tions and the calibration strategy adopted. Section 4 presents the simulation results
under uniform pricing, exploring how treatment efficacy and decentralized responses
shape epidemic outcomes. Section 5 provides a full sensitivity analysis on the main
parameters for all the relevant scenarios proposed. Section 6 investigates the implica-
tions of introducing parsimonious, location-specific pricing, and compares the resulting
dynamics to the baseline scenario. Finally, Section 7 concludes.

2 The Model

This paper investigates the dynamics and control of an infectious disease in a spatially
distributed population. The disease can spread locally via agent-to-agent interactions
and can be treated through an innovative but costly therapy. Given the budgetary con-
straints faced by public health authorities, not all infected individuals can be treated,
which gives rise to a control problem: the optimal allocation of limited resources to
contain the epidemic over time and space.

To capture these mechanisms, we develop an agent-based model embedded on a two-
dimensional toroidal lattice. Each cell (or patch) in the lattice represents a local
subpopulation and follows a compartmental SIR scheme in discrete time. The spread
of infection occurs both within each cell and across adjacent cells, following a Moore
neighborhood structure—that is, each cell interacts with its eight immediate neighbors.
Within each cell, a local health authority determines the share of infected individuals
to be treated at each time, maximizing a payoff that reflects both the health benefits
and economic costs of treatment, infection, and resource use.

To make the entire analysis accessible also to readers who are not specifically familiar
with SIR frameworks, we first analyze a simplified, non-spatial version of the model
in which treatment intensity is kept constant. This will also allow us to establish some



benchmark results concerning the existence and stability of equilibria. We then intro-
duce spatial interactions across cells and examine their implications for local dynamics
and epidemic containment. Finally, we incorporate the role of the health authority,
formalizing its payoff function and characterizing the optimal treatment policy under
a budget constraint.

2.1 An Epidemic SIR Model with Treatment

In the absence of spatial interactions, the disease evolves according to the following
discrete-time SIR model with treatment. We assume a constant population size N =
S+ I + Ry (e.g., via balancing birth and death rates), and let A; € [0, 1] denote the
fraction of infected individuals treated at time ¢.!

St+1 = St — AIt
It—‘,—l = It + AIt — P>\tIt (1)
Rit1 =R+ AR,

Here, AL, = ,B(It)CSt% denotes the new infections at time ¢, while AR, = pAI;
represents the individuals who recover due to treatment. The infection rate 5(I;) is
assumed to be decreasing in the health authority’s treatment effort h; = pA;I;, in
which p > 0 represents the constant unitary price of treatment, and it reflects the idea
that stronger treatment campaigns reduce effective contagion. Specifically, we consider
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where g is the baseline transmission rate, p > 0 measures treatment efficacy, and
S > 0 captures other exogenous mitigation measures (e.g., social distancing). The
parameter ¢ > 0 is the average number of contacts per person per period.

2.1.1 Equilibrium Analysis under Constant Treatment

To gain analytical insights into the long-run behavior of the epidemic, we assume
a constant treatment intensity Ay = A € [0,1]. Under this assumption, the system
always admits a disease-free equilibrium (DFE) given by (S*,I*, R*) = (N,0,0). To
evaluate its local stability, we linearize the system around this point and derive the
corresponding Jacobian matrix:

Iy Boc(1+3)
J(S I) B 1-— 6(ht)c N — (1+p[1))AIt+§)2N (2)
)= Blhy)e - L (1=pXN)(1+3)>N—Boc(1+3)N
t)C° N (+ppr 1 +3)°N

1Susceptible, infected, and recovered states are assumed to be nonnegative at each time ¢.



By evaluating J (S, I) at the disease-free equilibrium (S*, I*) = (N, 0), we obtain

1 _ Boc
Jore = 1@25 : (3)
014+p\| —/——— -1
’ (mu +3) )
Defining the basic reproduction number as
Boc
Ry = ————, 4
O oA +3) )

we derive the eigenvalues of Jppg, that is the pair (A1, A2) = (1,1 4+ pA(Ro — 1)).
Therefore, the DFE is locally stable if and only if Ry < 1 and this condition provides a
critical threshold for disease eradication. Indeed, to suppress infection, the treatment
rate must satisfy

< Boc

)\>)\:7p(1+§). (5)

Differently, when Ry > 1, the disease initially spreads and the DFE becomes unstable.
However, since there is no demographic renewal and no reinfection, the number of
susceptible individuals decreases over time. As a result, the effective reproduction
number eventually falls below one, causing the epidemic to peak and then decline.
The system ultimately converges to the disease-free equilibrium (I* = 0) not because
it is globally stable, but due to structural depletion of susceptibles. The resulting
dynamics describe an epidemic outbreak followed by natural extinction, rather than
the emergence of a persistent endemic state.

2.2 Local Infection Dynamics with Moore Neighborhood
Interactions

Consider now an extension of the dynamic model which accounts for local spatial
interactions. Each location v € V hosts a subpopulation following the same SIR struc-
ture, but infection can also spread across neighboring cells. Let N, denote the Moore
neighborhood of cell v, consisting of its eight adjacent locations. The dynamics in each
cell v are given by:

Py = SP - AT

Pey =17+ ALY — pAIY (6)

{1 = R+ AR}

where
1P It
ALY = B(I}) - c- Sp - <N:+ N) (7)
LeEN,
AR} = pAI}. (8)



In this spatial setting, the infection rate is still endogenous and defined locally as:
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As in the case without local interactions, the system still admits a global Disease-
Free Equilibrium (DFE) defined by I} = 0, R} = 0, and S} = NV for all v. To analyze
its local stability, we linearize the infected compartment around the DFE as

U ~ v /BOC U v If v
It+1NIt+ 1+3 Iy + N ZW — PALY,

LEN,

which simplifies to

B()C ﬂoCNU If
I, = \) 1 “t
o ( 1+s5 7 t+1+§eeN N?

The above expression reveals that the local infection dynamics are influenced not
only by the infected individuals in v, but also by the infection prevalence in neighboring
cells, scaled by population ratios. By defining a cell-specific basic reproduction number

as
N'I}
Ry = + . 10
=i (1 5 ) B
The DFE is locally asymptotically stable in cell v if and only if Rf < 1. Therefore,

the global DFE is stable across the lattice if

_ Nv
maxRo <l = X'> )\UL max [ 1+ Z (11)
veV p(1+3) wvev Pve

This condition generalizes the non-spatial threshold by incorporating the spatial
heterogeneity in population distribution. Cells surrounded by lower-population neigh-
bors are more prone to instability, requiring stronger treatment effort to prevent
epidemic persistence.

2.3 The Health Authority’s Problem in the Spatial Setting

In the spatial model, we assume that each cell v € V hosts a local Health Authority
(HA) responsible for managing treatment decisions within its jurisdiction. At each
time ¢, the local HA must determine the fraction A} € [0,1] of infected individuals in
cell v to be treated with the innovative drug.

The treatment is costly, and the HA operates under a fixed per-period budget by = b.
Since treatment reduces contagion and promotes recovery, but also entails direct and
indirect costs, the HA chooses A} to maximize a payoff function that captures both the
epidemiological and economic impacts of its decision. Importantly, HAs are myopic



and do not form expectations about the state or actions of neighboring cells.
Let h{ = pA{I} denote the treatment expenditure in cell v at time ¢, where p is the
unit cost of the curative treatment. The HA’s optimization problem is given by:

max 1747 (12)

subject to the budget constraint hy < b”, or equivalently Y < 2= when I} > 0.
t

pl
The payoff function is:

HAw v v TV 02 v ()‘;}va)2
1T =P =N —ou(ly)” — QTTM}“ (13)

where the positive parameters are described as follows:

¥ captures the monetary benefit of each recovery due to treatment;

ay weighs the (quadratic) cost from the prevalence of infection;

oy represents the cost of implementing the treatment effort;

6 models the decreasing marginal returns of treatment as the number of infections
increases.

Solving the first-order condition for an interior solution yields

0t -t~ 20530 o, 19
from which we directly obtain
v, v
] (15)
Thus, the complete policy rule for each local HA is:
pv
A" = min {max {0,275}, o 1} (16)

This rule ensures that the treatment decision remains feasible (bounded between
0 and 1) and respects the budget constraint. It also implies that treatment intensity
varies dynamically across space and time as a function of local infection levels. Since
each HA operates independently and without coordination across the lattice, treat-
ment policies may vary substantially across locations, depending on local epidemic
conditions and resource constraints. This spatial heterogeneity can affect the aggregate
disease dynamics and the likelihood of cross-cell contagion.



3 The Agent-Based Framework

3.1 Initialization

The simulation world employs a toroidal grid topology. Such topology eliminates edge
effects by ensuring all patches have identical neighborhood connectivity. While this
abstracts real-world geography, this is computationally preferable for studying global
pandemic dynamics where isolated geographic boundaries would introduce artifacts.
In a toroidal grid, agents crossing one boundary re-enter the opposing boundary. In
our case, each cell of the grid represents a world country, with a total of 196 cells.
Each cell carries a population drawn from a transformed lognormal distribution that
takes values [100, 10°]. At the setup, a cell (country) population can either be entirely
susceptible, or it can have a share of infected, according to three different scenarios,
displayed in Figure 1. The selected scenarios are designed to represent a strategically
relevant initial spread configuration and to highlight specific aspects of the disease’s
evolution.

In the first scenario, each cell is initialized with an infected share i drawn
independently from a continuous uniform distribution over the interval [0, 1):?

i’ ~U(0,1) (17)
where ¥ = J{;J represents the proportion of infected individuals.

This approach simulates a situation where the disease is already widespread or
endemic at various levels globally, without a single isolated point of origin. The objec-
tive is to study propagation in a context of diffuse pre-existence, which is useful for
understanding diseases with long incubation periods or asymptomatic transmissions
leading to undetected spread.

In the second scenario, initial conditions simulate a single localized world outbreak
where the seed country represents a high-infection core (> 50% infected) and its
adjacent territories are partially infected (< 50% infected). In detail:

® Seed country (randomly selected patch ig):
it ~1(0.5,0.8)
e Adjacent neighbors of cell k¥ (Moore neighborhood):
it ~U(0,0.5) YL EN,

e All other countries:

ig=0 VU¢N]€

This emulates a classic pandemic emergency with a well-defined epicenter, allowing
for the analysis of spatial spread dynamics and the impact of geographical connectiv-
ity in the early phase of an epidemic.

2The choice of this range reflects the behavior of the command used in NetLogo (the programming
environment adopted for simulations), which generates a pseudo-random floating-point number greater than
or equal to 0 and strictly less than the specified upper bound.
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Infected Infected

0%
0%
20%
0%

(a) Scenario 1 (b) Scenario 2

Infected

(¢) Scenario 3

Fig. 1: The three main scenarios at ¢ = 0. Seed =1000.

The third scenario extends Scenario 2 by establishing n = 10 spatially distinct out-
breaks. Each epicenter and its adjacent territories are initialized identically to the
single-outbreak case. This configuration simulates the near-simultaneous emergence of
the disease in multiple regions, providing insight into how the interaction and coales-
cence of multiple foci influence the overall global pandemic trajectory.

Together, these three scenarios offer a diverse range of starting conditions, from
widespread pre-endemic to isolated and multifocal emergence, enabling us to thor-
oughly explore the impact of spatial heterogeneity and the initial distribution of
infected individuals on the dynamics of a large-scale epidemic.

As mentioned, 7Y, the monetary benefit of recovering from the disease, is heteroge-
neous across countries. We imagine it as the average annual salary of those that once
recovered can again productively contribute to their country’s economic life. Therefore,
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each cell v is initialized with +¥ drawn from a transformed pareto-lognormal distribu-
tion that takes values [10,500] so to represent a realistic distribution of wages.?
Since we can interpret the parameter vV as the average annual wage within a country,
we derive a country’s GDP, B, as:

BY =~"N" (18)
We exploit the GDP to obtain the national health budget in the following way:

b =rN" (19)

where r ~ U(0, 1), such that cells are endowed with a heterogeneous random share
of their GDP as budget devoted to health expenses, in other words, the HA budget.
Besides these heterogeneous constant parameters, the model includes constant param-
eters which are homogeneous across cells, p, ¢, By, d, and are given the values reported
in Table 1.
Price, p, is assumed homogeneous and time-invariant following the idea that a
monopolistic drug manufacturer sets a fixed global price.

Variable Values

P 0.7

c 6

Bo 0.1

) 4

5 10

Nv ~ Lognormal(ln 5000, (In 1.8)2) subject to N? € [10, 10°]
yv ~ Pareto-Lognormal(100, 1.2, 1.8) subject to v¥ € [10, 500]
p 18

Table 1: Parameter set employed in the model set-up

3.2 Simulating the model

We model a generic infectious disease characterized by relatively slow contagion
dynamics, more comparable to chronic infections such as Hepatitis C than to acute,
fast-spreading viruses like COVID-19 or influenza. Infections of this type typically
progress over longer timescales, with slower transmission rates and prolonged durations
of infectiousness. This epidemiological profile allows us to abstract away from rapid
day-to-day fluctuations and instead focus on longer-term spatial and policy dynam-
ics. As a result, we approximate each discrete time step in the model as representing
one year, which provides a meaningful temporal resolution for studying the effects of
treatment decisions, budgetary constraints, and spatial interactions over the course of
an epidemic. The model is iterated for 60 time steps, each representing a year. This
time span is chosen to provide a reasonable and comprehensive period for observing

3Note that a Pareto-Lognormal distribution is governed by a set of three parameters, p, the location
parameter of the lognormal distribution, o, the scale parameter of the lognormal distribution, and «, the
shape parameter ruling the tails. The parameters chosen for the wage distribution are listed in Table 1.

12



the long-term dynamics of the type of disease being modeled.

Every year, each HA" must decide over the optimal share of the infected population
to treat with the innovative drug, A*Y, on the basis of its budget. As seen in 12,
the optimization takes into account a monetary cost, o, indirectly associated with
the treatment, representing for instance distribution and personnel cost. We assume
this cost to be highly dependent on exogenous macroeconomic shocks and inflation
dynamics, therefore o is updated at each time step according to the following rule:

aip ~ U(50,100) (20)
Once cells set their o, the infection rate 5V (1) evolves according to equation (9),
and the number of new infections, following equation (7).
Finally, cells update their population compartments accordingly. The algorithm fol-
lowed at each time step is displayed in Figure 2.
We run 2000 Montecarlo simulation for each setup scenario discussed.

13



Initialize cells accord-
ing to setup scenario

‘ For every t, each cell v: ’

Pmm s 1. Compute A*Y | --

2. Determine 5 |<- -

: 3. Compute Contagion from
| new infected Moore neighbors
L | 4. Compute

recovered

‘ Update compartments ’

‘ End iteration ’

Fig. 2: Flow of actions within a single cell v in a single time step t.
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4 Results

Figure 3 shows the final state (¢ = 60) for the three scenarios considered for one sim-
ulation run. The comparison with the initial state ¢ = 0 displayed in Figure 1 shows
that initial conditions are crucial on the disease spread and the final outcome over the
time span considered.*
Figure 4 displays the distribution of population compartments (infected, recovered,
and susceptible) across cells at t = 60 time steps for the three different initial scenar-
ios.
Scenarios 1 and 3 clearly show a bimodal distribution of recovered which follows the
double bump observed for the infected compartment.
In the first scenario, the disease has spread and a substantial number of individuals
have recovered, but a large portion of the population remains susceptible. The graph
also shows that most cells either have a very low number of currently infected individ-
uals or are entirely free of active infections. The broader tail extending towards higher
log (1 4+ z) values indicates that a small proportion of cells might still harbor a larger
number of infected individuals, but at much lower densities. This pattern is character-
istic of a disease that has spread widely and then largely receded, with only residual
or very low-level ongoing transmission in many areas. The presence of a significant
recovered peak confirms that the disease has progressed through a considerable por-
tion of the global population.
Similarly to the first scenario, the third one shows a very high density of cells with
a small number of infected or recovered individuals (approaching zero on the linear
scale), although the second peak of the recovered distribution is far less prominent
indicating that the recovered populations, while present, are less concentrated at the
very highest compartment sizes across the grid compared to the first scenario where
the disease diffused more widely from an initial pervasive state.
The bimodal pattern is less visible in the second scenario where early treatment adop-
tion allows to significantly contain the infection process generated by a single outbreak.
The infected curve displays an extremely sharp and high peak at log(1 4+ x) & 0. This
indicates that the vast majority of cells have effectively zero or extremely few currently
infected individuals after 60 years. This strong concentration at zero is indicative of a
successful eradication or a highly localized initial spread that has since faded out in
most of the grid.
Similarly, the recovered curve also shows a very high peak at log(1+ z) =~ 0, reinforc-
ing the idea that most cells either had no significant infection to begin with, or the
infected individuals recovered and their numbers subsequently fell to very low levels
while a significant portion of cells remained largely untouched by the infection.
Figure 5 shows the dynamics of the global population compartments for a single
simulation for the baseline model (left panels) in comparison with the model simulated
with A} = 0 (right panels), i.e. assuming that HAs do not treat any share of their
infected population. The comparison shows the success of the drug adoption in slowing
down the infection process for all three scenarios. Note that although the share of
infected population in the third scenario of the baseline model appears increasing for

4Comparison is ensured by setting the same seed, i.e. the numerical value used to initialize a pseudo-
random number generator (PRNG).
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(a) Scenario 1 (b) Scenario 2

Infected

75%

0%
25%
0%

(¢) Scenario 3

Fig. 3: Final spatial distribution of infection across cells at ¢ = 60 (Seed = 1000).

the 60 years analyzed, in the very long run it stabilizes concurrently to an increase of
the recovered population (see Figure 20 in the Appendix).

We can draw similar interpretations for Figure 6 which shows the average share of
infected across cells for the three scenarios. Instant treatment adoption results in a
quick and remarkable drop in the number of infected in the first scenario. The third
scenario follows a similar trend while the second one reflects the instant infection
containment with average share of infected across cells approaching zero (Figure 6a).
The third scenario can be interpreted as a middle ground between the more extreme
first and second scenarios. Notably, the results from the first and third scenarios show
greater alignment, whereas the second scenario diverges more substantially. This is
particularly evident in the graph illustrating disease spread in the absence of a cure
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Note to the Figure: The data are presented on a log (1 + x) scale. This transfor-
mation serves two key purposes: firstly, the logarithmic scale significantly enhances
visualization by compressing wide ranges of values, making trends and patterns more
discernible; secondly, the addition of '1’ to the argument (1 + x) prevents the loss of
observations that would otherwise be zero, which would be undefined under a simple
logarithmic transformation.

(i.e. A} =0 for all v and t), where convergence to full infection occurs more slowly in
the second scenario (Figure 6b).

In Figure 7 we report the average A* across cells and average cost-budget ratio
across cells, defined for every cell v at each time step ¢ as

pATTY Ry
bv - bv :
By analyzing Figures 6 and 7 jointly, we can draw three key conclusions regarding
the economic-epidemiological dynamics arising from decentralized treatment decisions
under budget constraints. These insights results from the interaction between the ini-
tial spatial distribution of infections and induced treatment response, with important
long-term fiscal implications.

(21)
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First, Figure 6a highlights the significant containment effect of endogenous treat-
ment policies. When HAs adaptively determine the share of infected individuals to
treat—subject to local budget constraints—the epidemic curve is significantly flat-
tened compared to the case without treatment (Figure 6b). In the no-treatment
simulations, the average infection levels remain markedly higher and show persistent
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growth over time, indicating the inability of natural recovery alone to suppress the
epidemic. This contrast clearly illustrates the effectiveness of decentralized but respon-
sive intervention in reducing infection prevalence and transmission speed.

Second, Figure 7b reveals that in all simulated scenarios, a strong and immediate fiscal
reaction occurs: the cost-to-budget ratio peaks early on, reflecting the urgency with
which HAs respond to initial outbreaks. This front-loaded treatment effort is instru-
mental in curbing the epidemic’s spread and is especially pronounced in more severe
or widespread initial configurations. Importantly, the panel also shows that despite
the heterogeneity of initial conditions, and resulting differences of government decision
over the share of infected to treat (i.e. \*, see Figure 7a) across the three scenarios, the
cost-to-budget ratio converges to roughly the same medium- to long-run level across
all scenarios. This outcome demonstrates that once the disease is effectively contained,
the required treatment effort stabilizes at a low and comparable level—underscoring
the self-correcting nature of optimal local interventions.
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Third, the comparison across scenarios reinforces the nonlinearity of the epidemic-
management process. When the outbreak is spatially concentrated (as in Scenario 2),
early aggressive intervention proves particularly efficient: it quickly eliminates con-
tagion in most cells and drives both infection and treatment rates close to zero. In
contrast, scenarios with widespread or multifocal outbreaks (Scenarios 1 and 3) exhibit
more persistent infection dynamics and higher ongoing treatment levels. Nonetheless,
the convergence of fiscal burden over time (Figure 7b) reveals that effective local
containment ultimately harmonizes the economic cost structure, even across initially
disparate contexts.

These results emphasize the strategic importance of early, targeted, and adaptive
responses. While local HAs act independently and without global coordination, their
endogenous treatment policies—driven by local infection levels and bounded by fiscal
constraints—generate emergent dynamics that can suppress the epidemic effectively.
In particular, the uniformity of long-run economic outcomes across diverse scenarios
points to the robustness of decentralized responses, provided that initial outbreaks
are met with sufficient intensity. From a policy perspective, this suggests that early
allocation of treatment capacity and decentralized autonomy can jointly ensure both
epidemiological and fiscal sustainability.

5 Sensitivity Analysis

To assess the robustness of our findings, we conducted sensitivity analyses on key
model parameters across all three scenarios. Parameters were selected based on their
relevance to the dynamics of disease transmission and intervention effectiveness.
Specifically, we test the model sensitivity to variation of the marginal return of treat-
ment, §; the starting infection rate, Sy; the efficacy of treatment, p; and price p. For
each scenario, we systematically varied these parameters within plausible ranges to
examine the stability of the observed patterns for three main variables: the average
A*, the average share of infected, and the average cost-to-budget ratio across cells. To
ensure comparability, each simulation was run using the same random seed, so that
all other conditions remained constant across parameter changes.’

5.1 Scenario 1

As known from equation (13), the marginal return of treatment is negatively related
to the number of infections. We observe this negative relation in Figure 9a. It follows
that as the marginal return to treatment is decreasing in the level of infected pop-
ulation, an additional treatment unit becomes cheaper and therefore we observe an
increasing trend of the share of treated population, \* (Figure 8a), from which it fol-
lows an increasing cost-to-budget ratio (Figure 10a). However, besides the jumps (or
drop in the case of infected) observed with respect to § = 0, changes observed in the
selected variables remain extremely small.

Variations in the parameter Sy produce unsuprising changes in the share of infected
which increases in the level of the starting infection rate (Figure 9b), from which

5The seed is set to 1000 for all simulation runs in the sensitivity analysis. This ensures compatibility
with other Figures in the paper.
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follows an increase in the share of population to treat (Figure 8b), and therefore a
growing cost-to-budget ratio (Figure 10b).

In Figures 8, 9, and 10 we test values of p between [0.5,1]. Increasing the efficacy of
treatment leads to smaller shares of infected population (Figure 9c¢), and therefore
smaller A* (Figure 8c) and cost over national budget (Figure 10c), with these relations
showing a non-linear pattern.

The chosen range of values tested for p comes from the consideration that for values
p — 0 the treatment is close to complete inefficacy and thus it would not make a
reasonable investment for HAs. We highlight this aspect in Figure 11 for Scenario 1
(Scenarios 2 and 3 are shown in Figures 21 and 22 in the Appendix).

By conducting a comparative statics exercise on the relationship between the optimal
treatment share A} and the level of treatment efficacy p, one observes that higher val-
ues of p lead to a greater fraction of infected individuals being treated. However, the
figures go beyond this by showing the spatial and epidemiological consequences of low,
intermediate, or high levels of efficacy, as reflected in the system’s final state at time
t = 60.

In particular, when comparing these results to the initial distribution of infection in
Scenario 1 (as shown in Figure 1), it is evident, especially for p = 0.3 (panel (a))
that even though the disease is eradicated in cells where initial infection levels were
extremely low, the combined effect of disease spread and insufficient treatment efficacy
results in a final state where infection remains widely distributed—visibly indicated
by a significant number of yellow-marked cells, with respect to the green cells observ-
able in Figure 1.

This undesirable outcome diminishes as p increases: higher treatment efficacy corre-
sponds to more effective containment and faster suppression of the disease. In the
extreme case where p = 1, representing a fully effective treatment, the epidemic is
essentially eradicated across the entire spatial domain within just 60 time steps.
Finally, we test the model sensitivity to variations of treatment price, while keeping
it homogeneous across cells. The relation to all three variables analyzed appears to be
non-linear, with a decreasing overall trend of the average A* across cells for increasing
values of price: as treatment is assumed more expensive, the HA treats a smaller share
of population (Figure 8d). As mentioned, the relationship is non-linear with a clear
concave shape for values of price up to about 30. While this might appear counterintu-
itive, we remind that in addition to contributing to determining the optimal number of
infected to treat, A*, at local/national level, price enters equation 9 thus contributing
to the infection spread through interaction among cells. Overall, the share of infected
in the model increases with increasing price as we expect smaller \* (Figure 9d). The
cost-to-budget ratio clearly shows concavities reflecting the ambiguous effect of price
as it participates in a double endogenous process while reasonably increasing overall
as the treatment is assumed more expensive (Figure 10d).
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5.2 Scenario 2

The second scenario is somewhat a more extreme case with respect to the first one
and this results in less linear reactions of the model to changes in its parameters,
particularly A\* and price, for which clear and multiple concavities are observed in
Figures 12, 13, and 14.

For values of § in the range [3, 5], the decreasing trend of A* might in fact appear non-
trivial. Our interpretation is based on two main points. First, one should remember
that mean values of \* across cells include a great majority of cases in which A* = 0,
limiting the observed pattern of Figure 12a to a very localized decision-making pro-
cess. Second, as shown in (13), § interacts with the cost o which changes according
to exogenous macroeconomic shocks (see Equation 20). Therefore, an increase in
&, which can be interpreted as a stronger convexity in the treatment cost function,
reduces the marginal gain from curing additional infected individuals, especially in
areas where the infection has already spread. From an economic perspective, this
mimics real-world situations where rising marginal treatment costs, due to congestion
or reduced treatment efficiency under pressure, discourage full utilization of available
resources, particularly when budget constraints are tight.

Reactions of the model to different values of 5y and p are as expected and similar
to what observed for Scenario 1. Despite the limited infection spread given from the
single-outbreak setting of Scenario 2, Figure 15 shows that different infection rates
at the start result in drastically different final states of the disease spread. This
reinforces the idea that even isolated initial shocks can lead to large-scale epidemics
if local interactions are not effectively controlled. In economic terms, this underscores
the importance of early containment strategies and how differences in intrinsic trans-
missibility (8p) can enlarge the aggregate burden of disease even under seemingly
favorable starting conditions.

A major difference with respect to Scenario 1 is the overall increasing trend of the
share of treated individuals A* with regards to increasing levels of price. We interpret
the non-linear pattern as the joint effect of the contribution of price to both A* and the
infectivity rate 8 through A*, as shown in (9). More specifically, while higher prices
naturally constrain the HA’s budget and may reduce the feasible intensity of treat-
ment, they also indirectly increase § via a decrease in treatment coverage, reinforcing
infection spread. The feedback mechanism thus generates a non-monotonic relation:
in some intermediate price ranges, rising prices induce HAs to react by allocating
more aggressively within constrained environments. This mechanism illustrates how
pricing policies, even when exogenous, can interact with decentralized optimization in
non-obvious ways, amplifying spatial inequalities and distorting treatment strategies.
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simulations.
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5.3 Scenario 3

As mentioned in previous sections, the third scenario represents a sort of middle way
between Scenarios 1 and 2. Figures 16, 17, 18 show similar results as compared to
Scenario 1, however levels of infected are smaller at all values tested for the four
parameters and consequently lead to smaller levels of the share of treated population
and corresponding budget devoted to treat the disease.

From an economic point of view, this outcome can be understood by considering
the infection configuration of Scenario 3: the disease is initially seeded in a mod-
erate number of cells, allowing for some spatial diffusion, but not as explosively
as in Scenario 1. This intermediate setting enables health authorities to react in a
more targeted and cost-efficient manner. With fewer cases per cell and weak spatial
externalities, the perceived marginal benefit of treating infected individuals declines,
particularly when compared to scenarios where contagion risks are more extreme and
require urgent intervention to prevent cascades.

Moreover, in a context where the infection is neither minimal nor huge, local health
authorities may face a relatively balanced optimization problem: the infection is
significant enough to justify treatment, but not so severe as to require intensive or
widespread effort. This translates into more cautious use of the available budget,
reflected in lower \* and treatment costs. This behavior aligns with rational resource
allocation under uncertainty and diminishing returns: as the infection remains under
partial control, authorities avoid over-investment and instead preserve resources for
future spikes or shifts in epidemiological conditions.

In addition, the smoother sensitivity profiles observed in Scenario 3, compared to the
more nonlinear and discontinuous responses in Scenario 2, suggest that intermediate
disease prevalence reduces the occurrence of threshold dynamics in policies. When
infection levels are extreme, as in Scenario 2, small changes in parameters like price
or treatment efficacy can produce large behavioral discontinuities. In contrast, the
moderate setting of Scenario 3 produces more stable marginal incentives, allowing
the system to respond gradually to parametric variation.
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6 The case of heterogeneous parsimonious prices

In contrast to the preceding sections, where the unit price of the innovative treatment
was assumed to be fixed and exogenous across all countries, we now explore a scenario
in which the treatment provider (the manufacturer) adopts a form of parsimonious
pricing, i.e., a strategy of price differentiation across regions. In this framework, the
supplier sets country-specific prices for the treatment based on observable economic
and medical characteristics of each region, but without direct knowledge of the local
health authority’s budget 0.

More precisely, we assume that the treatment provider has access to information
about (i) the monetary benefit of recovery 7%, and (ii) the effectiveness of the treat-
ment, measured by the local value of the parameter p. These two variables are used
to determine the perceived value of the treatment in each country, and prices are
set accordingly. This approach reflects a form of profit-oriented price discrimination,
whereby the supplier seeks to extract more surplus in regions where the value of treat-
ment is higher—either because the recovery yields greater economic returns or because
the treatment is more effective. Specifically, we assume that for every cell v, the price
pY is drawn from a uniform distribution with minimum value 10 and maximum value

v p:

p’ ~U(10,7"p). (22)

Importantly, because the supplier is assumed to lack precise knowledge of local
health budgets, pricing is not tailored to maximize accessibility or epidemiological
impact, but rather to align with perceived willingness-to-pay inferred from local benefit
and efficacy levels. This distinction introduces a novel layer of complexity: local health
authorities must react to prices that are endogenously determined by factors they (at
least partially) do not control and that may not reflect their fiscal capacity.
In terms of results, Figure 19 shows that the adoption of heterogeneous pricing across
countries—unrelated to the actual budget available to local Health Authorities—leads
to a clear deterioration in epidemiological outcomes. In all simulated scenarios, the
introduction of price dispersion results in higher infection levels (panel (a)) and a
reduced capacity to eradicate the disease (panel (b)) compared to the benchmark case
with uniform pricing (see Figures 6a and 7).
Moreover, Figure 19a reveals a striking increase in the spatial variability of infection
prevalence, which not only persists but amplifies over time. This heterogeneity in local
epidemic trajectories contributes to the broader diffusion of the disease, creating a self-
reinforcing mechanism that sustains elevated infection rates across many cells until
the final simulation period at ¢ = 60.
This additional layer of heterogeneity introduced by the pricing scheme also affects
other key variables. As shown in Panels (b) and (c), the same volatility is observed
in the trajectories of treatment intensity A and the cost-to-budget ratio. While the
latter remains broadly comparable to the uniform price case in aggregate terms, the
treatment share A is consistently lower across most cells.
This outcome is largely driven by the fact that, although the assigned price may reflect
the local value of recovery and efficacy, it does not necessarily ensure affordability. In
many cases, the assigned price is such that only very low or even null values of A satisfy
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the local budget constraint. As a result, the inability to respond adequately in high-
need areas further amplifies both spatial inequality and long-run infection persistence.
As observed for the baseline case, comparison among scenarios reveals that Scenarios
1 and 3 tend to align in the HAs’ decision outcome A\*, while different initial conditions
of Scenario 2 do not allow the average A* across cells to converge with other scenarios.
However, considering the average cost-budget ratio across cells, the three scenarios all
align and show similar levels compared to the baseline model (Figure 7). Despite price
heterogeneity, the parsimonious condition allows all countries to deal with and contain
the infection spread at the start of the simulation time. The ratio than quickly drops to
values close to zero. Note that since this is given by p”‘b*# (see eq. 21), price directly
and indirectly enters at the numerators given its contribution to the determination of
A®v resulting in a way in a coordinating effect between price and A*" through price:
higher levels of price correspond to smaller A*¥ and viceversa (see also Figure 8d).

0.6

o
IS

B y
g Scenario
£ = Scenario 1
5 == Scenario 2
[ N
E Scenario 3
» o2
0.0
0 20 40 60
Time
(a) Average share of infected
06
0075
k)
T
Scenario E Scenario
04 g
= Scenario 1 B 0.050 = Scenario 1
e S
= Scenario 2 @ = Scenario 2
Scenario 3 f Scenario 3
3
02 O 0025
00 /\_’/_/ 0000 /=
0 20 40 60 0 20 40 60
Time Time
* .
(b) Average A (c) Average cost-to-budget ratio

Fig. 19: Average values across all countries for 2000 Montecarlo simulations

36



7 Conclusions

This paper develops and analyzes a spatially distributed agent-based SIR model with
local optimization and budget-constrained treatment policies. Our framework cap-
tures key elements of epidemic management in real-world settings: heterogeneous
local health authorities, costly but effective pharmaceutical treatments, and spatial
spillovers that propagate infection across neighboring regions. The model departs from
standard mean-field approaches by introducing decentralized decision-making, endoge-
nous treatment intensity, and dynamically evolving infection risk at the cell level.
From a theoretical point of view, we characterize the stability properties of the disease-
free equilibrium under both constant and optimal treatment strategies, highlighting
the critical role played by treatment efficacy (p), the basic reproduction number (Ry),
and budget availability. The existence of a threshold treatment share A, above which
the epidemic is eradicated, provides a clear policy target. However, once spatial inter-
actions are introduced through a Moore neighborhood structure, the stability of the
disease-free equilibrium becomes conditional on the entire spatial configuration, not
just on local parameters. Infection spillovers can destabilize cells that would otherwise
suppress the disease, illustrating the limits of purely local control.

Our numerical simulations confirm and extend these insights. We show that decentral-
ized treatment decisions—when constrained by budget and guided by local infection
levels—can lead to effective epidemic control in many scenarios. Nevertheless, spatial
heterogeneity in infection, treatment intensity, and cost dynamics naturally emerges
and persists, particularly in early periods. The local reproduction number Ry and the
corresponding treatment behavior evolve in a highly asymmetric fashion across the
grid, generating clusters of risk that delay eradication.

We also examine two important dimensions of heterogeneity: the efficacy of the treat-
ment (p) and the pricing strategy adopted by the supplier of the innovative drug.
A static comparative analysis of different values of p reveals that low efficacy can
severely hinder the system’s ability to reach a low-infection equilibrium, even when
optimal treatment behavior is applied. Conversely, higher efficacy allows for conver-
gence to near-eradication within relatively few periods. When the price is fixed across
cells, treatment intensity adapts to the infection level and budget constraint in a rela-
tively smooth and effective manner. However, when the supplier adopts a parsimonious
pricing strategy—setting the price based on local recovery benefits and treatment
efficacy—this generates wide dispersion in treatment effort, ultimately exacerbating
infection levels and inequality across regions.

Taken together, these results provide several policy-relevant insights. First, decentral-
ized control mechanisms can be effective, but only if spatial spillovers are contained
and treatment efficacy remains sufficiently high. Second, uniform pricing of life-saving
treatments may in fact be preferable to recovery-based price discrimination, espe-
cially when health authorities operate under strict budget constraints. Finally, efforts
to coordinate health responses spatially—particularly during early stages of conta-
gion—may be crucial to avoiding persistent regional disparities and to accelerating
convergence toward a disease-free state.

Future work could extend this framework to account for more realistic mobility pat-
terns, information frictions across local authorities, strategic pricing behavior by
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pharmaceutical firms, and learning or adaptive expectations among agents. The model
may also serve as a computational testbed to explore the performance of decentral-
ized versus coordinated epidemic policies under alternative institutional and fiscal
architectures.
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A Appendix: Long run dynamics

Figure 20 shows the dynamic of the global share of infected population in the very
long run for the baseline model. In the first and third scenario (see panel (a) and
(c)) we observe a downward sloping curve of susceptible population while the share
of recovered grows as the infection remains controlled, respectively, in hundreds and
thousands of years. However, this is not observed for the second scenario, where the
limited infection diffusion at setup prevents disease spread even in the very long run
(5000 years). Note that the three graphs display a transient phase leading to a disease-
free equilibrium, which is achieved due to the system’s stability condition—not because
of saturation. As discussed in Section 2, this condition implies sustained containment
of the disease over time. Importantly, the disease-free state does not correspond to the
entire population being susceptible (i.e., S = N), but rather to S = N — R, where a
share of the population has been infected and then recovered.
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Fig. 20: Long-run comparison of global infection dynamics across the three initializa-
tion scenarios (seed = 1000).
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B Appendix: Efficacy of Treatment

Figures 21 and 22 show the final spatial distribution of infection (¢ = 60) respectively
in the second and third scenarios for different values of the efficacy of treatment (p). As
p increases, the containment of the disease is more effective, particularly for Scenario
2 where the epidemic is essentially eradicated across the entire spatial domain within
the time span considered.
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Fig. 21: Final spatial distribution of infection at t = 60 in Scenario 2, under different
treatment efficacies (Seed 1000).
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Fig. 22: Final spatial distribution of infection at t = 60 in Scenario 3, under different
treatment efficacies (Seed 1000).
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