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Abstract

We represent an exchange economy in terms of statistical ensembles
for complex networks by introducing the concept of market configura-
tion. In this way, starting from economic reasoning, we obtain a sound
interpretation of the typical network variables in terms of thermody-
namic quantities together with a strong consistency with microeco-
nomic theory, and in particular with Walrasian general equilibrium
theory. In our formalism, naturally arises the interpretation of the
temperature T as a quantification of economic disequilibrium, which
can indeed coexist with statistical equilibrium.
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1 Introduction

The first attempt to draw a link between classical thermodynamics and
economics, due to Samuelson [1], was based on the parallel between en-
tropy maximization and utility or profit maximization. Under this per-
spective, economic agents are treated like thermodynamic macroscopic sub-
systems composing a larger macroscopic system which is the market [2].
This view, although consistent with the supposed optimizing behavior of
economic agents, is at odds with the statistical physics microfoundation of
thermodynamics, according to which macroscopic equilibrium arises from
a purely random behavior of micro units. Statistical physics introduces a
clear separation of the microscopic and macroscopic levels which is lost in
the proposed economic parallelism.

A recent stream of literature employs the techniques of statistical me-
chanics under the hypothesis that in a limited period of time an economic
system may behave as though in a quasi-equilibrium state [3, 17]. In these
models we have homogeneous agents randomly exchanging money with a
constraint on the total amount of money M in the system. In particular
in [17] statistical ensembles describing economic systems with money (cash)
and credit-debt are defined in an analytic way without resorting to numeri-
cal simulations. The homogeneity of economic agents is a consequence of the
assumption of uniform (in physical terms, isotropic) random exchange, since
the latter hypothesis makes agents symmetric with respect to the probability
distribution of their monetary holdings.

In this paper we attempt to take a step forward by describing with the
tools of statistical physics an economic system with heterogeneous agents.
We resort to complex networks theory in order to introduce the key notion
of market configuration. In [18, 19] the authors consider a set of network re-
alizations (ensemble) and then impose constraints on the expectation value
of a given set of graph observables {xi} with respect to the ensemble. This
approach, as we see in the next section, lends itself to a very natural inter-
pretation in terms of economic equilibrium. On the other hand, this is not
the usual approach of statistical mechanics, where the constraint is imposed
on the total ’Hamiltonian’ of the system. In practice, the ensemble intro-
duced in [18] is obtained, with the standard methods, only in the specific
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case T = 1, provided that the energy levels are appropriately chosen. By
introducing a generic value of the temperature T , it is possible to regain
the whole formalism of statistical mechanics, and consequently a consistent
microfoundation of thermodynamic variables and relationships. It should
be noticed that for a generic value of T we have statistical but not economic
equilibrium. The equality between the two is regained at T = 1 (or for
some other fixed value T0, see note 4), provided that the energy levels in
the two Hamiltonians are equal. Hence the principal motivation of this pa-
per is to define ensembles for complex networks with a sound interpretation
of the typical network variables in terms of thermodynamics quantities to-
gether with a strong consistency with economic theory in general, and with
Walrasian general equilibrium theory in particular. In the literature, the im-
portant concept of graph temperature has been introduced for the first time
in [20] within a grand canonical ensemble. Moreover, in [21] the temperature
of a complex network is studied in terms of the clustering properties of the
graph.

The structure of the paper is the following. In section 2 we discuss the
main ideas to build the ensembles of complex networks. In sections 3,4,5
we build the ensembles. In section 6 we apply our modeling to illustrate
the role played by T in terms of statistical uncertainty over market states.
In section 7 we further analyze the parallel between thermodynamic and
economic equilibrium as addressed in the economic literature. Section 8 is
devoted to some conclusions.

2 Preliminaries

In microeconomic theory an exchange economy is a system of N consumers,
initially endowed with ωi units of the available M commodities and with
preferences over alternative price-dependent consumption vectors xi(p) ∈
Bi, where Bi (the budget set) is a set of affordable consumption vectors for
i, given ωi and p. In this economy, trade occurs whenever agents prefer
a consumption vector xi 6= ωi. The excess demand function zi = xi − ωi

describes the trading plan of each agent.
A Walrasian equilibrium occurs when the market-clearing condition is

satisfied for some price vector p∗:
∑

i

zi(p
∗) = 0 (1)

and at the same time the consumption vector of each individual is the pre-
ferred one x∗i in her own budget set. The existence of the equilibrium price
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vector p∗, which can be proved invoking Katutani’s fixed-point theorem, is
regarded as a fundamental achievement of microeconomic theory [22].

The notion of Arrow-Debreu equilibrium extends Walrasian equilibrium
by introducing the notions of states of the world s = 1, . . . , S and of contin-
gent commodities, i.e. of commodities whose delivery is conditional on the
realized state of the world. Then an Arrow-Debreu equilibrium is simply a
Walrasian equilibrium in which the individual consumption vector xi is a
M × S vector. With this formulation, x and ω become dependent on s. In
fact, they are random variables distributed according to the discrete prob-
ability P (s). The Arrow-Debreu equilibrium requires that each individual
formulates a complete set of preferences over state-dependent consumption
vectors x(s). Additionally, it requires that a market exists for each contin-
gent commodity. These forward markets open before the uncertainty over
the state of the world is resolved. Once the latter is revealed, commodities
are traded according to the corresponding equilibrium price and consump-
tion vectors. There is no motivation to open a spot market for re-trading,
because forward markets achieve for some state s exactly the same outcome
that is achieved by a spot market opened when all participants know that the
state of the world is s. Finding the Arrow-Debreu equilibrium price vector
p∗ is thus equivalent to finding the state-dependent Walrasian equilibrium
price vector p∗(s) for each s = 1, . . . , S.

According to a well known result of microeconomic theory, the require-
ment of a complete set of forward markets can be dropped. In fact, it is
possible to show that the equilibrium achieved by trading on a forward mar-
ket for a single commodity alongside with spot markets for all commodities
(the so-called Radner Equilibrium) is equivalent to an Arrow-Debreu equi-
librium under the condition that agents know the market-clearing prices for
all commodities and under each state.

Surprising as it may be, a statistical representation of markets arises
naturally from standard microeconomic theory. In order to illustrate this
point, we need to introduce the notion of market configuration, defined
as a sequence of nonnegative values {wij} describing the flow of a given
commodity from i to j, which can be arranged in a nonnegative matrix W .
With this in mind, we introduce the following notations: xi =

∑

j wji is the
final allocation for agent i, and the excess demand is defined as follows

zi =
∑

j 6=i

(wji −wij) = xi −
∑

j

wij . (2)

Thus we obtain that ωi =
∑

j wij, where it is understood that wii stands
for the fraction of the initial endowment which is not exchanged on the
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market. As we explain in sec. 3, a Walrasian equilibrium corresponds to
many distinct market configurations, which is natural to consider as ran-
dom and equiprobable since economic agents are indifferent between them.
This observation opens the door to a statistical representation of market
configurations by means of the microcanonical ensemble.

Starting from this background, the transition to complex networks the-
ory is very natural. In fact, the representation of markets outlined above
is nothing different from the matrix representation of a network G made of
N vertices 1. Thanks to this parallelism, we can take advantage of previous
contributions from the complex networks literature. In the paper [18], the
authors adapt the powerful tools of statistical mechanics to the study of
random networks. In order to grasp the importance of this approach for our
representation of markets, we need in the first place to distinguish between
statistical equilibrium and economic equilibrium. Indeed, statistical equilib-
rium in the sense of statistical physics, is a more general concept, meaning
that we can define a time independent probability measure over market
configurations P (G). If the system is allowed to relax without external dis-
turbances, it will converge to P (G) for t → ∞, but the achievement of a
Walrasian equilibrium cannot be taken for granted unless some additional
arrangements are introduced.

It is possible to show that, following the method of Park and Newman[18],
we may obtain economic equilibrium as a consequence of statistical equilib-
rium. The rationale of their approach is straightforward, since they seek a
systematic way to generate ensembles of random graphs displaying a set of
desired average properties {xi}. In practice, they consider a set of graph
configurations G ∈ ℑ imposing the constraint that the expectation value of
graph observables {xi} with respect to the ensemble probability distribution
P (G) is equal to some arbitrary value x̄i. P (G) is obtained maximizing the
Gibbs entropy S

S = −
∑

G∈ℑ

P (G) lnP (G), (3)

together with the observables and normalization constraints

〈xi〉 =
∑

G∈ℑ

P (G)xi(G) = x̄i,
∑

G∈ℑ

P (G) = 1. (4)

1For this reason, in this paper the terms “market” and “network” are used as equiva-
lents even if, strictly speaking, a market is a directed weighted network. If G is a binary
network, its links can take only binary values, and thus its matrix representation is given
by the matrix A with binary entries. For convenience, in this paper binary and weighted
networks are labeled respectively fermionic and bosonic networks by analogy with the
terminology of statistical physics.

5



As a result, they obtain the distribution

P (G) =
e−H(G)

Z
, Z =

∑

G∈ℑ

e−H(G), H(G) =
∑

i

θixi(G), (5)

where {θi} are Lagrange multipliers
2.

The degree and strength distributions are the most common observables
chosen as constraints for the problem (3)-(4). By strength of a node i in
a bosonic symmetric network we define the sum wi =

∑

j wij . If W is
asymmetric, i.e. G is directed, we need to distinguish between the out-
strength wout

i and in-strength win
i . The degree of a node i, instead, is defined

over the binary matrix A representation of a fermionic network as the sum
ki =

∑

j aij . If A is asymmetric, again we need to distinguish between the
out-degree and in-degree of the node i. Park and Newman provide a solution
of the problem (3)-(4) when the constraints are represented either by the
degree or by the strength distributions. They took into account the following
Hamiltonian for a fermionic undirected network with fixed expected degree
distribution:

H =
∑

i

kiθi. (6)

Using the definition of ki eq. (6) may be rewritten as follows

H =
∑

i<j

ǫijaij, (7)

where ǫij = θi + θj. For a bosonic network they obtain instead

H =
∑

i<j

ǫijwij . (8)

Starting from the expressions (7)-(8), they derive the analogue of the quan-
tum Fermi-Dirac and Bose-Einstein distributions respectively for 〈aij〉 and
〈wij〉. By inspection it is easy we see that the wij and aij are indeed equiv-
alent to the occupation numbers included in the Hamiltonian of the Fermi
and Bose ideal gases respectively, while the ǫij are equivalent to the en-
ergy levels occurring in the same Hamiltonian. This equivalence justifies

2There is a bijective relationship between a given network model and the corresponding
statistical ensemble, since solving a given model means actually to find the particular
equilibrium distribution which is consistent with the constraints of that model. For this
reason the terms “model” and “market ensemble” or “network ensemble” can be used as
equivalents.
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the interpretation, made by the authors, according to which links are the
equivalent of particles in network ensembles.

In economic terms, links / particles are commodity units while the en-
ergies ǫij are very naturally interpreted as shadow prices [23]. Furthermore,
given our previous market representation, in the bosonic directed case it is
possible to make the straightforward identifications:

ωi = wout
i (9)

xi = win
i (10)

zi = win
i −wout

i (11)

These identifications make sense only if ωi(s) and xi(s) have negligible
fluctuations around their ensemble averages. In fact, the problem (3)-(4)
is related to the derivation of the canonical ensemble in statistical physics,
which requires that fluctuations of constrained observables are small. From
our arguments above, we see that this is not necessarily the case for Arrow-
Debreu equilibria, since P (s) is arbitrary. On the other hand, microeconomic
theory makes the unrealistic assumption that we have a complete knowledge
of the world, represented by the finiteness of the set of states. If we suppose
instead that there is a numerable infinite set of states, we can compute x∗(s)
and p∗(s) for at most a finite sample of states S. But then the equivalence
between forward markets and spot markets, which is essential for microeco-
nomic theory, comes to depend critically on the shape of P (s). Only if the
latter is sharply peaked around the most likely state ŝ, this equivalence may
be reformulated in the following form:

〈ωi〉 ≈ ωi(ŝ) ≈ ωi(s) (12)

〈p∗〉 ≈ p∗(ŝ) ≈ p∗(s) (13)

〈x∗i 〉 ≈ x∗i (ŝ, p
∗) ≈ x∗i (s, p

∗) (14)

where s is the realized state. When this condition is fulfilled, we say that
the market is in a statistical Walrasian equilibrium. We label this equilib-
rium as Walrasian because agents’ uncertainty regarding the final allocation
is strongly limited under our assumptions, and the computation of p∗ is
necessary in order to achieve the equilibrium itself. The conditions above
are satisfied as soon as we choose the following constraints for the problem
(3)-(4):

〈

wout
i

〉

= ωi(ŝ) (15)
〈

win
i

〉

= x∗i (ŝ, p
∗) (16)
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In fact, we know from statistical physics that the fluctuations around the
expected values are small in the resulting network ensemble for large L =
∑

i ωi. With this choice we justify the previous claim that economic equi-
librium can be obtained from statistical equilibrium in the bosonic directed
model under appropriate conditions3.

We should note two fundamental differences of the distribution (5) with
respect to the usual Boltzmann-Gibbs distribution. In the first place, the
former is coincident with the latter only for T = 1. Since T is related
to the energy constraint, we see that H is not explicitly conserved in the
network ensemble, but its conservation is a consequence of the constraints
over observables. Thus, it easy to see that if we allow T to vary we cannot
comply anymore with the constraints of the model4.

In the following sections, we build the fermionic and bosonic network
ensembles along standard lines [3], thereby recovering the factor 1/T of
statistical physics. In order to do so, we introduce the generic energy levels
ǫij together with the Hamiltonian

H(G) =
∑

ij

ǫijσij. (17)

Of course, it is always possible to specify the energy levels in such a way
as to verify the constraints (15)-(16) for T = 1 or some other fixed value
(see note 4). In this particular case, our conditions for statistical Walrasian
equilibrium are regained under the more general model. This possibility
suggests that T could be interpreted in this context as a quantification of
economic disequilibrium, which can indeed coexist with statistical equilib-
rium. In other terms, statistical equilibrium should be interpreted as the
outcome of a relaxation process which not necessarily leads the system to
economic equilibrium.

For the derivations of the following sections, we propose to identify the
equivalent of the volume V of physical systems for networks with the degrees
of freedom of the network. These are given by the number of points of the
bidimensional lattice formed by the couples of nodes (i, j), i.e. V = O(N2).
For example, for directed graphs we have V = N(N − 1), for undirected

3In principle, it is possible to provide an economic interpretation also for degree distri-
butions. In fact, the latter represent the number of transaction made by agents. If these
transaction are costly, it makes sense for agent to economize and fix a desired level for
them. We will not pursue this identification in this paper, but we will focus instead on
the economic interpretation of bosonic networks.

4Of course, it is always possible to make the substitution ǫij = ǫ′ij/T0 for some T0. In
this case the constraints are satisfied only for T = T0.
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ones V = N(N − 1)/2 while for graphs with selfloops V = N2. Moreover,
according with the usual interpretation (see [18, 19]), the number of links,
that we denote from now on with L, is the formal analogue of the number
particles in the usual physical systems. In the economic interpretation,
the fluctuations of L, introduced with the grandcanonical ensemble, are a
consequence of uncertainty over the available commodities under different
states of the world, since L =

∑

i ωi(s). With this assumptions and ideas in
mind, in the next three sections we derive the statistical ensembles.

3 Microcanonical ensemble

Let’s suppose that agents are certain about the state of the world s̄, i.e.
P (x) = δ(x − s̄). Then, provided they know the market clearing price p∗,
they are free to choose their optimal consumption x∗ and the market will
display with certainty an “energy” level E =

∑

i (λix
∗
i + θiωi). Here the λi,

θi are nothing more than multipliers for the following constraints:

wout
i = ωi(s̄) (18)

win
i = x∗i (s̄) (19)

In general there are many market configurations which are consistent with
these constraints. Since agents have no reason to prefer one of this states
over the other, the latter can be considered as equally likely. In this way
we obtain the microcanonical ensemble, i.e. the set of market configurations
which are consistent with Walrasian equilibrium.
The starting point to build the microcanonical ensemble is the Hamiltonian
(17)5 with ǫij = λi + θj. In this ensemble, the “energy” H(G) = E is
conserved and the number of links or commodity units L and of agents N
are fixed too. By considering these constraints, as usual, we can define Γ(E)
as the total number of configurations, at fixed V = O(N2) and L, calculated
at the surface H(G) = E = const. of constant energy. In this context, the
entropy S can be defined in the usual way:

S(E,V,L) = ln Γ(E,V,L). (20)

5From a more general point of view we can attach to any vertex i micro-variables
{x1

i , ...x
k
i }. In the most general form we have Hi(G) = f(x1

i , .., x
k
i ) with H(G) =∑

i
Hi(G).
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The following thermodynamical relations hold:

dS =
∂S

∂E
dE +

∂S

∂V
dV, (21)

(

∂S

∂V

)

E,L

=
P

T
,

(

∂S

∂E

)

V,L

=
1

T
, (22)

where P is the pressure definition in the network context. Furthermore, we
define the analogue of the free Helmholtz energy F :

F = E − TS, (23)

dF = dE − TdS − SdT (24)

From (21) and (22) we get:

TdS = dE + PdV. (25)

Equation (25) is the analogue of the first thermodynamic principle for com-
plex networks. Finally, from (24) and (25) we have:

dF = −PdV − SdT, (26)
(

∂F

∂V

)

T,L

= −P,

(

∂F

∂T

)

V,L

= −S. (27)

4 Canonical ensemble

Now let’s suppose that the probability distribution of states is peaked around
a given state s̄ and that x∗, ω and p∗ are continuous in s. In this case the
conditions for a statistical Walrasian equilibrium, specified in sec. 2, are
fulfilled. Agents trade according to the observed s 6= s̄, but the probability
of observing large deviations from Walrasian equilibrium, as defined by the
microcanonical ensemble, is small.

Inspired by this economic view, the derivation of the canonical ensem-
ble follows the lines present in [3, 24] , whereby we follow as closely as
possible the standard derivation of the Gibbs distribution in statistical me-
chanics. As a first step we introduce G1 and G2 as sub-networks of an
isolated network G of fixed energy E with E1 ≪ E2. Then we assume that
H(G) ≃ H(G1) + H(G2), which means that the states (i, j), defined be-
tween couples of nodes i, j belonging respectively to G1 and G2, are empty,
i.e. that links or commodity units cannot flow from one subnetwork to the
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other. Thus the two systems can be treated as mutually independent. Under
the assumption that E is conserved, we have

Γ(E) ≃ Γ1(E1)Γ2(E2 = E − E1). (28)

As usual, by performing a taylor expansion with E1 ≪ E, since we are in-
terested in the behavior of the subsystem 1 independently from the reservoir
2 we can write, after using (20) and (22),

Z =
∑

G

e−
H(G)

T , P (G) = Ce−
H(G)

T , C =
1

Z
. (29)

Following the usual derivation in statistical mechanics we can write the
partition function

Z = e−
F
T . (30)

As stated above, differently from (5), the standard factor 1
T appears in (29)-

(30). The two distributions coincide for T = 1 provided that the energy
levels in the two Hamiltonians are identical.

5 Grand canonical ensemble

Since the Park and Newman distribution is a special case of the standard
Gibbs distribution, the grand canonical extension may be accomplished
along the standard lines6. Here it is essential to stress again that the number
N is related to the volume of the network, i.e. V = O(N2) is the equivalent
of the volume V of physical systems. We suppose that G1 and G2 are com-
ponents of a larger system G characterized by the Gibbs distribution (29),
but now links are allowed to “move” between the two volumes V1 and V2.
The partition function Z of G is

ZG(L, V, T ) =
∑

G

exp

(

−
H(G)

T

)

= (31)

=

L
∑

L1=0

∑

G1

exp

(

−
H(G1)

T

)

∑

G2

exp

(

−
H(G2)

T

)

, (32)

6We observe that Park and Newman don’t derive explicitly the grand canonical par-
tition function, although they use it implicitly to solve their model. Even if they don’t
introduce the chemical potential, their results are correct since, as underlined in [19], the
latter can be always absorbed in the energy terms ǫij .
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Also in this case, by following the derivation of the grand canonical partition
function of the standard statistical mechanics [24] (remember that in our
case L plays the role of particle numbers N in a ordinary gas), by the help
of (29) and (30) after posing µ =

(

∂F
∂L

)

V,T
, P = −

(

∂F
∂V

)

L,T
and introducing

the fugacity z = exp
( µ
T

)

, after a taylor expansion, we obtain the grand
canonical partition function:

Q(z, V, T ) ≡

∞
∑

L=0

zLZG(L, V, T ), (33)

where the subscript ’1’ has been dropped in (33). Moreover, the standard
relationships still hold:

logQ =
PV

T
(34)

〈L〉 = z
∂

∂ z
logQ. (35)

Furthermore, we have

dS =
dE

T
+

P

T
dV −

µ

T
dL, (36)

dF (T, V, L) = −PdV − SdT + µdL, (37)

and
TdS = dE + PdV − µdL. (38)

The analogue of the Gibbs-Duhem relation gives

SdT = V dP − Ldµ. (39)

It should be noticed that our approach allows us to study the result of a
variation of the temperature for complex graphs. We define the specific heat
CV by

CV =

(

∂E

∂T

)

V,L

. (40)

Discontinuities of CV are related to phase transitions. Let’s see how to
compute Q in the case of a directed fermionic network. Since L =

∑

i 6=j σij ,
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and thanks to (17), the grand partition function reads:

Q(z, V, T ) =

n(n−1)
∑

L=0

zLZG(L, V, T ) =
∑

{σij}

exp

[

µL−H

T

]

(41)

=
∑

{σij}

exp





∑

i 6=j

(µ − ǫij)σij
T



 = (42)

=
∏

i 6=j

[

1 + exp

(

µ− ǫij
T

)]

. (43)

The expected occupation numbers 〈σij〉 are obtained in the usual way

〈σij〉 = −T
∂

∂ǫij
logQ (44)

=

exp

(

µ− ǫij
T

)

1 + exp

(

µ− ǫij
T

) , (45)

which coincides with the results of Park & Newman for T = 1.
In the bosonic case, instead of (43) we have

Q(z, V, T ) =
∏

i 6=j









1

1− exp

(

µ− ǫij
T

)









. (46)

Espression (46) it gives

〈σij〉 =
1

exp

(

−µ+ ǫij
T

)

− 1

, (47)

that is the Bose-Einstein distribution for the network. In this way we can
also regain the results of [19] but in a more general context since all the
variables needed to build thermodynamics (P, T, V, L, µ) are defined.
The expected value of a product of m links in general is given by

〈σij . . . σhk〉 = (−T )m
1

Q

∂

∂ǫij . . . ∂ǫhk
Q
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We also obtain the usual results for fluctuations of σij:

〈σ2
ij〉 − 〈σij〉

2 = −T
∂F

∂2ǫij
= T 2∂ logQ

∂2ǫij
=

exp
(

µ−ǫij
T

)

[

1± exp
(

µ−ǫij
T

)]2 (48)

In general the covariance of σij and σhk, where either i 6= h or j 6= k, is

〈σijσhk〉 − 〈σij〉〈σhk〉 = −T
∂F

∂ǫij∂ǫhk
= 0 (49)

Of course, this result can be obtained directly from the fact that σij and
σhk are independent. The degrees or strengths wi instead are positively
correlated [19]. Using ǫij = θi + θj we obtain

〈σiσj〉 − 〈σi〉〈σj〉 = −T
∂F

∂θi∂θj
=



































exp
(

µ−ǫij
T

)

[

1± exp
(

µ−ǫij
T

)]2 for i 6= j

∑

j

exp
(

µ−ǫij
T

)

[

1± exp
(

µ−ǫij
T

)]2 for i = j

(50)
Once again both results can be derived just by assuming that the σij are
independent. In particular for i 6= j we have the following

〈σiσj〉 =

〈

∑

k

∑

k′

σikσjk′

〉

(51)

=
∑

k

∑

k′

〈

σikσjk′
〉

= 〈σ2
ij〉+

∑

k 6=i

∑

k′ 6=j

〈σik〉〈σjk′〉 (52)

With an equivalent argument we can prove that, in a directed network with
statistically independent links, out-degrees (in-degrees) and out-strengths
(in-strengths) are reciprocally uncorrelated, while they are positively corre-
lated with in-degrees (out-degrees) and in-strengths (out-strengths).

6 An application: Graph Thermodynamics

In this section we apply the statistical ensembles presented in the sections
above, and in particular the grand canonical one, to study the role of the
temperature in our model. To this purpose, we want to consider simple
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expressions for the energies ǫij .
To start with, the grand canonical partition function Q defined in (43) can
be rewritten as:

Q =
∑

A

exp(µLA −HA)/T, (53)

where the pedix A denotes the graph elements {σij} and thus the probability
of a graph A is given by:

PA =
1

Z
exp(µLA −HA)/T (54)

The energy (hamiltonian) function of a graph is given by eq. (17):

HA ≡ H =
∑

ij

ǫijσij (55)

where σij is the adjacency matrix. Without loss of generality we take into
account the case of a fermionic network, i.e. σij = 0, 1. In the following we
reproduce the results obtained in [20] for the two limiting cases T →∞ and
T → 0. We begin by studying the limit for T →∞:

lim
T→∞

Z = 2N(N−1)/2 (56)

for an undirected graph. Thus in the limit T → ∞ all the graphs in the
ensemble have the save probability:

PA = 2−N(N−1)/2, ∀A (57)

In order to derive an analytical result for the low temperature limit, we have
to specify an ansatz for the energies ǫij. The most simple ansatz is given
by ǫij = ǫ for each i, j. In this case it is straightforward to derive the limit
T → 0. We denote by A the graph with the maximum allowed LA (with N
fixed). The probability can be written as:

PA =
1

∑

B 6=A exp [(µ− ǫ)(LB − LA)/T ] + 1
(58)

By assuming µ > ǫ we get:
lim
T→0

PA = 1 (59)

since each single term in the summation goes to zero for LB < LA. Moreover
PB ≡ 0 ∀B 6= A. The graph with the highest probability is the complete
connected one (see fig. 1). In the case µ < ǫ the only graph which survives
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Figure 1: Totallly connected graph with N = 10. This graph has probability
PA = 1 in the limit T → 0 for µ > ǫ.

is the totally disconnected one, i.e LA = 0 with probability:

PA =
1

∑

B 6=0 exp [(µ− ǫ)LB/T ] + 1
(60)

that in the limit T → 0 gives:

lim
T→0

PA = 1 (61)

In the following there are results for ǫij random variables with given distri-
bution. In particular from now on we assume ǫij gaussian iid variables with
ǭij = 1 and standard deviation σ = 0.5. With the previous assumptions
we cover in particular the case ǫij = ǫi + ǫj as well as more general func-
tional dependences. In figure 2 there is the energy distribution, i.e. number
of graph with a given energy, for a graph ensemble with N = 10, µ = 10,
T = 104. This distribution simply reflects the different combinatorial factors
for a graph with fixed N and a variable number of edges. In particular there
is only one way to get the totally connected graph, while for example there
are 2769 ways to get a topologically inequivalent graph with N = L = 10.

Having in mind the economic interpretation of a graph ensemble, it is
worth studying how the probability of a given graph changes with the tem-
perature T . In particular we want to compute the number of graphs with
a given probability. This quantity is crucial since each (inequivalent) re-
alization of a graph G = {N,L} represents a possible configuration of the
market.
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Figure 2: Energy distribution with ǫij random variables with gaussian dis-
tribution.

Let us start from the two formal limits previously analytically derived,
T → 0 and T →∞, under the assumption µ > ǫ, i.e. the non trivial case:

• T → 0, only the totally connected graph survives with PA = 1. This
means that we have no uncertainty on the market configuration s al-
though we are, economicly speaking, far from a Walrasian equilibrium
since the latter is not consistent with any variation of T.

• T → ∞, all the graphs are equally likely with probability PA =
2−N(N−1)/2 (undirected fermionic graph), i.e. we have the maximum
uncertainty on the market configuration.

Let us now what happens for T interpolating between these two exact re-
sults. We will rely on some numerical random graph sampling. The sam-
pling dimension is 105. The results for T = 20, 50, 100 are encoded in the
plots 3 showing for a fixed temperature the number of graphs as a func-
tion of their associated probability. The probability is the grandcanonical
one (fixed number of vertices N and variable numebr of edges L) written
in eq. (54). It is possibile to see that in the first two cases that the vast
majority ( 105) of graphs have negligible probability, while for T = 102

the probability starts spreading more “democratically” among the graphs.
These behaviour is even more clear taking into account higher temperature
values (see plot 4. For these higher temperatures the “collapse” of all the
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Figure 3: Number of graphs with given probability for T = 20, 50, 100.

graphs towards the probability 10−5 (that allowed by the finite sampling) is
well rendered. It is remarkable that these numerical results are robust. In
fact the same behaviour holds even for a more “realistic” economic setup,
namely ǫij gaussian distributed. Moreover the same results still hold in the
case of a bosonic network, where of course the limit T → 0 is associated
to a condensed state with particles occupying the state or states with the
lowest energy. However this is not surprising since the bosonic case can be
obtained from the fermionic one by simply rescaling the energies.
As a further consideration, it is interesting to see how thermodynamics trans-
formations can act to change the value of T . In the usual thermodynamics,
the temperature variation of a given system can be obtained by a change in
the volume, where for example a given gas is enclosed, by keeping fixed the
other thermodynamical quantities, or by an energy exchange with a given
reservoir. By analogy, in a complex network we may think to a transfor-
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Figure 4: Number of graphs with given probability for T = 7 · 102, 103.

mation changing the vertex number N (i.e. the volume). As an example,
if vertices represent a system of banks, then this can be accomplished by
a merger of two or more banks or by the failure of some bank. Another
possibility can be energy exchange. By eq. (17), this can be obtained by
a change in the number of links L or by a change in the values of the ǫij .
A variation of L, which represents a net inflow or outflow of commodities,
has a clear interpretation in terms of open economic systems. Concerning
the change in the energies ǫij, this can have an interesting economic inter-
pretation. In fact, by the influence of some external economic input, the
agents can change strategy or ”behaviour” and thus they can change the
energy distributions ǫij by reaching another equilibrium state with a dif-
ferent T . Note that this generally can be accomplished out of a Walrasian
equilibrium. However, we may think also to a change of the energy levels in
such a way that the system evolves through states of Walrasian equilibrium.
In practice, a mismatch between economic and statistical equilibrium can
arise when a market is subject to an unexpected external shock, that in our
formalism is described by a variation of T which is not compensated by an
adjustment of the energy levels. We may think instead that under an exter-
nal shock, the latter are generally very different from the starting ones. But,
if the flow of external shocks is fast enough to prevent the relaxation of the
system or the adjustment of expectations, economic equilibrium becomes
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impossible. Conversely, for a very short relaxation time, economic equilib-
rium can be reached. The reasonings above show that our formalism allows
to explore in a sound way the meaning of all the relevant thermodynamical
transformations.

7 Discussion

Samuelson [25] expressed the view that no more than a formal mathematical
analogy exists between classical thermodynamics and utility theory. This
analogy is grounded in the mathematical tool of constrained optimization,
which is applied respectively to entropy and to the individual utility func-
tion. More recently, Smith and Foley have elaborated further on this parallel
[2]. It is interesting to compare their approach with the one we present in
this paper. From a methodological point of view, they are quite different:
Smith and Foley leverage on the parallel between utility and entropy, and
consequently try to mutually adapt neoclassical utility theory and classi-
cal thermodynamics; we leverage instead on the indeterminacy of Walrasian
equilibrium with respect to market configurations in order to bring statis-
tical physics and thermodynamics into general equilibrium theory, without
any explicit reference to utility.

The main motivation for Smith and Foley to push the parallel between
utility and entropy is to lend support to a decentralized process of price dis-
covery, which can be contrasted with Walrasian tântonnement [26]. On the
contrary, we use Walrasian equilibrium as a starting point to introduce all
thermodynamic quantities, including entropy, with a clear microfoundation
in terms of market configurations.

Smith and Foley explicitly choose to neglect the separation between mi-
cro and macro by treating economic agents in an exchange economy as
thermodynamic macroscopic systems. In particular, they draw a parallel
between the process of discovering market-clearing prices in such economy
and the partial equilibration of a collection of thermodynamic systems. The
mental experiment they propose, in its simplest form, is the following: two
isolated thermodynamic systems with different extensive and intensive vari-
ables are brought into contact in such a way that they are thermodynam-
ically closed one with respect to the other. Then the system formed by
the two subsystems will equilibrate up to a unique value of the intensive
variables (temperature and pressure) while, if the systems are of different
chemical nature, the extensive variables will generally be different. In the
economic interpretation, relative prices represent the intensive variables, and
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the individual consumption vectors represent the extensive variables of the
two subsystems. While thermodynamic equilibrium is obtained by maxi-
mizing entropy S(E,V ) as a function of the extensive variables, economic
equilibrium is obtained by maximizing U(X) as a function of the vector of
available commodities X.

Their parallel between entropy and utility runs into severe difficulties.
In the first place, the value of entropy for a macroscopic system at equilib-
rium is a state function of the system itself, with a well defined value. This
is not true for economic systems, because the maximum of U(X) is degen-
erate unless we suppose that agents exchange commodities at the market
clearing prices. In this case we obtain a Walrasian equilibrium, which be-
comes unique under some additional conditions. But Walrasian equilibrium
in this context is at odds with thermodynamics since if the intensive vari-
ables (relative prices) are already equal, no change in the values of extensive
variables (and thus no market exchange) is possible from a thermodynamic
perspective. In the second place, the idea that economic agents are ther-
modynamic systems implies that each agent can maximize her own utility
in isolation, something which is completely at odds with utility theory. In
the third place, entropy is additive, while utility has the same property only
under restrictive assumptions (quasi-linear utility functions). In the fourth
place, economic equilibration in the neoclassical theory is subject to the
voluntary exchange principle, which implies the additional constraint that
individual utilities can never decrease. This constraint prescribes that no in-
dividual agent will end up with a consumption vector which is smaller than
the endowment vector, while this is a perfectly possible outcome in thermo-
dynamics7. Last but not least, the notion of system in thermodynamics is
intentionally undetermined, since systems may be not only be brought into
contact but mixed to form a new larger system whose original components
cannot be distinguished anymore. But this is at odds with the very nature
of economic agents.

8 Conclusions

In this paper we have extend the approach started in [18] and developed
in [20] in order to define in a comprehensive way the thermodynamics of
complex networks. Furthermore, we have provided a clear economic inter-

7The simplest example is a system made of two subsystems of fixed volumes and
different temperatures: the initially hotter subsystem has lower internal energy and equal
volume at equilibrium.
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pretation of our results, showing that statistical equilibrium can be defined
also for systems which are not in economic equilibrium. In this context, the
temperature T for a given network can be seen as a measure of the departure
from economic equilibrium.

In the same way of physics, the relevance of statistical equilibrium for
networks must be traced back to the dynamics of relaxation. Concerning
the exchange economy introduced in sec. 2, the relaxation process can be
represented as follows. At t0 the market configuration is specified by wij =
δijωi. If we suppose that all agents know each other’s excess demand, then
it is rational for each agent i to choose for her transactions the counterpart j
which minimizes f = |zi+zj |. Then the quantity min(|zi|, |zj |) is exchanged.
When z =

∑

i |zi| is minimized, there is no more incentive to trade and the
system is in a rest state. In order to obtain economic equilibrium, the system
must achieve z = 0. In both cases, the system is driven towards a stable
state which is the one described in the previous sections.

As an application, we have considered different simple expressions for
the “energies” ǫij . In particular, we have considered the simple cases with
constant and gaussian distributed ǫij, and studied the ensemble probability
of a given graph in terms of the temperature T . What we obtain is that the
number of graphs with a given probability seems to be practically insensitive
to the choice made for ǫij (see also [20]).

It should be stressed that our approach differs from the most common
parallelism between utility theory and thermodynamics [7, 2]. In fact, we
do not identify the utility function with entropy and maintain instead the
fundamental distinction between micro and macro. Conversely, we start
from general equilibrium theory by introducing the equiprobable Walrasian
equilibrium states as the building blocks of a statistical representation of
market configurations. This provides a natural link with complex networks,
and in particular a clear connection between graph and thermodynamic
variables which preserves the core of microeconomic theory.
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