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Abstract

Real markets can be naturally represented as networks, and they
share with other social networks the fundamental property of spar-
sity, whereby agents are connected by l = O(n) relationships. The
exponential networks model introduced by Park and Newman can be
extended in order to deal with this property. When compared with
alternative statistical models of a given real network, this extended
model provides a better statistical justification for the observed net-
work values. Consequently, it provides more reliable maximum en-
tropy estimates of partially known networks than previously known
ME techniques.

1 Introduction

Since the outbreak of the global crisis, major policy considerations have
elicited an increased push towards better models of large scale market inter-
action. These models should be able to cope both with agents’ heterogeneity
and with their reciprocal interdependency, in order to provide a better agree-
ment with empirical evidence and a greater forecasting ability. With respect
to these efforts, the topological properties of markets, such as the density of
links between economic agents, generally play a puzzling role. The standard

∗The author acknowledges the financial support from the European Community Sev-
enth Framework Programme (FP7/2007-2013) under Socio-economic Sciences and Hu-
manities, grant agreement no. 255987 (FOC-II).
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microeconomic perspective, in fact, dictates that the more diversification, the
better for economic agents [1]. This statement requires economic networks,
and especially financial networks like interbank credit markets, to be dense,
i.e. to have a number of connections or connectivity l = O(n2) while in many
cases they are found to be sparse, i.e. to have a connectivity l = O(n) (see,
for instance, [10] or [5]).

Specific hypotheses, such as costly information gathering or sunk costs,
must be adopted in order to explain why economic agents may prefer to in-
teract only with a small neighborhood. These hypotheses may not be fully
satisfactory in many circumstances, e.g. when the goods offered on the mar-
ket are almost perfect substitutes (all the more so when they are actually
identical like in the credit market), or when information on market partici-
pants is publicly available. In this paper I adopt the complementary view of
building a class of statistical equilibrium market models which are expected
to have a given connectivity l̄. Statistical means that the commodity flow
wij between any couple of agents (i, j) is viewed as the realization of a ran-
dom variable, defined over a discrete nonnegative domain. The market as
a whole is nothing more than the collection of all these variables, that can
be represented as a random matrix W with entries which are statistically
independent but non necessarily equally distributed. Each realization of W
represents a possible state or configuration of the market, and the collection
of all these market states, together with a probability distribution over states
P (W ), is called a statistical ensemble. Equilibrium means instead that, if the
market is allowed to relax without external disturbances, it will converge to
the stable probability distribution P ∗(W ) which is obtained by solving the
model itself footnoteThere is a bijective relationship between a given model
and the corresponding ensemble, since solving a given model means actually
to find the particular P ∗ which is consistent with the constraints of that
model. For this reason the terms “model” and “market ensemble” or, as we
will see below, “network ensemble” can be used as equivalents..

Starting from this background, the transition to complex networks theory
is very natural. In fact, the representation of markets outlined above is noth-
ing different from the matrix representation of a network G 1. Thanks to this
parallelism, we can take advantage of previous contributions from the com-
plex networks literature. In particular, Park and Newman [14] have proposed

1For this reason, in this paper the terms “market” and “network” are used as equivalents
even if, strictly speaking, a market is a weighted network. If G is a binary network, its
links can take only binary values, and thus its matrix representation is given by the matrix
A with binary entries. For convenience, in this paper binary and weighted networks are
labeled respectively fermionic and bosonic networks by analogy with the terminology of
statistical physics [14].
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a general methodology for building ensembles of networks, with a fixed num-
ber n of nodes, satisfying linear and non linear constraints over the expected
values of network observables. They show, in analogy with equilibrium sta-
tistical physics, that P ∗ is a Boltzmann-Gibbs probability distribution over
network configurations. Since the Boltzmann-Gibbs distribution belongs to
the exponential family of probability distributions, networks belonging in the
resulting ensemble are labeled as exponential networks.

Park and Newman provide a solution for exponential networks when the
constraints are represented either by the degree or by the strength distri-
butions 2. Given our previous market representation, strengths represent
the expected supply or demand of the agents, while degrees represent their
expected number of buy or sell relationships with other agents. From the
definition of connectivity (see note 2), we see that only in the latter case
l is fixed. Thus we are left with the unsatisfactory alternative between a
bosonic model with uncontrolled connectivity and a fermionic model that
can’t describe, by construction, a market configuration. The authors of [9]
have shown that it is possible to overcome this limitation, i.e. to derive a sta-
tistical ensemble where both the expected strength and degree distributions
are fixed.

The rest of the paper is organized as follows. In sec. 2 I recall the main
results presented in [14]. The critical step for any empirical application of
exponential networks is to find the solution of a large non linear system of
equations, which provides the values of the Lagrange multipliers acting as
parameters for P ∗. For this reason, in the same section I show how it is
possible, by employing iteratively standard Newton methods from a suitable
starting point, to compute the solution of such system. In sec. 3, employing
the results of [9], I present two models. The first one is an intermediate
model satisfying both a constraint over connectivity and a constraint over
the expected strength distribution (sec. 3.1). Subsequently, in sec. 3.2
I present the complete model of [9], where both the strength and degree
distributions are used as constraints. Sec. 4 is dedicated to a comparison of
alternative models as tools for explaining a given observed network. Finally,
sec. 5 concludes.

2By strength of a node i in a bosonic network we define the sum wi =
∑

j 6=i wij . If
W is asymmetric, i.e. G is directed, we need to distinguish between the out-strength and
in-strength of the node i. The degree of a node i, instead, is defined over the binary matrix
A as the sum di =

∑

j 6=i aij . If A is asymmetric, again we need to distinguish between the
out-degree and in-degree of the node i. From the definition of di we get l =

∑

i di. Thus
connectivity is a function of nodes’ degrees. In the case of bosonic networks, it’s useful to
define v =

∑

i wi, where v is said to be the volume of G.
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2 Exponential Networks

The rationale of the approach of Park & Newman is straightforward: they
seek a systematic way to generate random graphs displaying a set of desired
properties {xi}. Usually these properties are taken from a real network: for
instance, we would like to test if a random network with those properties
displays other observed properties of the real network. In principle, their ap-
proach can be employed to isolate the fundamental properties of an observed
network, which can be defined as those that cannot be justified by random
interaction alone 3. For instance, it is well known from the complex network
literature that the degree and strength distributions that we generally ob-
serve in real networks cannot be derived from a statistical equilibrium model.
That’s the main reason why these distributions usually enter into the set of
desired properties mentioned above, acting as constraints in the model.

Since we work with random networks, our observables are naturally for-
mulated in terms of statistics computed over the network ensemble. In the
simplest case, we wish to equalize the ensemble average 〈xi〉 with some em-
pirical estimate of such average x̄i. Since the observables depend on network
realizations, we need to weight the ensemble average against the probability
P (G) of observing a given realization G:

〈xi〉 =
∑

G∈G

P (G)xi(G) = x̄i (1)

Since the xi(G) are a given, we need to specify a parameter dependent
functional shape of P (G) in order to solve the system. By adopting the basic
concepts of equilibrium statistical mechanics we obtain a solution for this
task by maximizing the following Lagrangean:

L = S + λ(1−
∑

G

P (G)) +
∑

i

θi

(

x̄i −
∑

G

P (G)xi(G)

)

(2)

Gibbs entropy S = −∑G P (G) lnP (G) is maximized, under the given
constraints, for the distribution satisfying ∂L/∂P (G) = 0, i.e.

lnP (G) + 1 + λ+
∑

i

θixi(G) = 0 (3)

Rearranging and taking antilogs:

3In this sense, statistical ensembles act as null models for real networks (see below, sec.
4). A subsequent elaboration in this direction is given by [15] and the related analysis of
world trade [6].
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P (G) =
e−H(G)

Z
(4)

where H(G) ≡
∑

i θixi(G) is the graph Hamiltonian which, thanks to
matrix representation of G (see sec. 1), can be rewritten in terms of the
matrix W or A. Z ≡ e(λ+1) is the partition function: from the normalization
constraint we easily obtain that Z =

∑

G e−H(G). Once we have obtained
the functional shape of P ∗ with the help of eq. (4), the model is said to
be solved when the values of the parameters {θi}, which fully determine P ∗,
are obtained from the system (1). In fact, it is possible to show that, if we
adopt the Boltzmann-Gibbs distribution (4), then the system (1) provides
the maximum likelihood estimates for the parameters {θi} [8].

When the constrained observables are the out- and in-degree distributions
of a fermionic directed network, the main quantities of the exponential model
read:

H(G) =
∑

i

∑

j 6=i

[(λi + θj)aij] =
∑

i

∑

j 6=i

Λijaij

Z =
∏

i

∏

j 6=i

(

1 + e−Λij
)

F = − lnZ = −
∑

i

∑

j 6=i

ln
(

1 + e−Λij
)

pij = 〈aij〉 =
∂F

∂Λij

=
1

eΛij + 1

Since the aij are bernoullian, fermionic exponential networks may be la-
beled more compactly as Bernoulli networks. When the constrained observ-
ables are the out- and in-strength distributions of a bosonic directed network,
the main quantities of the exponential model read:
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H(G) =
∑

i

∑

j 6=i

[(λi + θj)wij] =
∑

i

∑

j 6=i

Λijwij

Z =
∏

i

∏

j 6=i

∞
∑

wij=0

e−Λijwij =
∏

i

∏

j 6=i

(

1

1− e−Λij

)

F =
∑

i

∑

j 6=i

ln
[

1− e−Λij
]

〈wij〉 =
∂F

∂Λij

=
e−Λij

1− e−Λij

It’s also possible to write down P ∗(G):

P ∗(G) =
∏

i

∏

j 6=i

(

1− e−Λij
)

e−Λijwij =
∏

i

∏

j 6=i

P ∗(wij) (5)

It is easy to see that the P ∗(wij) are non identical but independent geo-
metric distributions with pij = 1− e−Λij . For this reason in the following we
label bosonic exponential networks more compactly as geometric networks.
Substituting the last equation into the constraints we obtain the following
specialization of system (1):

∑

j 6=i

xiyj
1− xiyj

= w̄i ∀i ∈ [1, . . . n]

∑

j 6=i

yixj

1− yixj

= w̄i ∀i ∈ [n+ 1, . . . 2n]

where xi = e−λi(∀i ∈ [1, . . . n]) and yi = e−θi−n(∀i ∈ [n+ 1, . . . 2n]).
When we use numerical optimization with standard Newton methods to

solve the system, it’s very likely that solutions with 〈wij〉 < 0 (i.e. xiyj > 1)
are selected. In order to avoid this problem it’s helpful to start with an
approximate solution such that xiyj < 1 ∀i, j. If xiyj ≪ 1 the following
sparse limit approximation holds:

xiyj
1− xiyj

≈ xiyj (6)

In this case the system may be rewritten
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∑

j 6=i

xiyj = w̄i ∀i ∈ [1, . . . n] (7)

∑

j 6=i

yixj = w̄i ∀i ∈ [n+ 1, . . . 2n] (8)

It is also well known that we can derive an explicit solution of the approx-
imated system if we allow for self-loops. In this case by adding equivalently
one of the two set of constraints we obtain (see note 2)

∑

i

xi

∑

j

yj = v̄ (9)

Substituting into the ith constraint

xi

v̄
∑

i xi

= w̄i ∀i ∈ [1, . . . n]

yi
∑

i

xi = w̄i ∀i ∈ [n+ 1, . . . 2n]

Substituting into the approximated expression for 〈wij〉 we obtain

xiyj =
w̄iw̄j

v̄
∀i ∈ [1, . . . n] ∧ ∀j ∈ [n+ 1, . . . 2n] (10)

from which

xi =
w̄i√
v̄

∀i ∈ [1, . . . n]

yj =
w̄j√
v̄

∀j ∈ [n+ 1, . . . 2n]

In order to obtain that xiyj ≪ 1, if we are not lucky enough to have a
distribution that directly provides the result, we can divide both sides of the
system (7) - (8) by a constant k 4. Then using the approximation (6) we
obtain the new system

4The sparse limit approximation holds also for Bernoulli networks. In this limit, the
exponential fermionic model is coincident with the so-called expected degree model [3]. On
the other hand, the former model is always more general than the latter in the sense that
it does not impose constraints on the degree distribution unless we wish to work in the

sparse limit. In fact, since eq. (10) in the fermionic case becomes aij =
d̄id̄j

l̄
, we see that

in order for aij to be bernoullian we need to suppose d̄id̄j 6 l̄ ∀(i, j). This constraint is
always required by the expected degree model. For an deeper analysis of this issue, see [8]
and [15].
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k
∑

j 6=i

xiyj
1− xiyj

= w̄i ∀i ∈ [1, . . . n]

k
∑

j 6=i

yixj

1− yixj

= w̄i ∀i ∈ [n+ 1, . . . 2n]

After having computed numerically the solution of this system, we may
reach the solution of the original one by iterating for k ↓ 1.

3 Conditional Geometric Networks

In [9] the exponential model is extended in order to comply with constraints
where both the expected strength and degree distributions are fixed. In this
section, I review these results in order to define two distinct but related
network ensembles. In the first ensemble the expected strength distribution
and the expected connectivity of a bosonic network are fixed. The second
ensemble is the one of [9], where both the strength and degree distributions
are fixed. Since P ∗(wij|aij) still follows a geometric distribution in these
models, they can be labeled as conditional geometric networks. Although
for expository convenience we present the results for the undirected case,
they can be immediately extended to directed networks. As an example, we
provide the solution of these models using data taken from a real directed
bosonic network.

3.1 Fixed sparsity and strength distributions

The main quantities for the model with fixed strength distribution and spar-
sity read:
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H(G) =
∑

i>j

[(λi + λj)wij + θaij] =
∑

i>j

[Λijwij + θaij]

Z =
∏

i>j

∞
∑

wij=0

e−[Λijwij+θaij ] =
∏

i>j



1 +
∞
∑

wij=1

e−[Λijwij+θ]



 =

=
∏

i>j

(

1 + e−θ
e−Λij

1− e−Λij

)

F = −
∑

i>j

ln

[

1 + e−θ
e−Λij

1− e−Λij

]

〈wij〉 =
∂F

∂Λij

=
e−θ

1 + (e−θ − 1) e−Λij

e−Λij

1− e−Λij

〈l〉 = ∂F

∂θ
=
∑

i>j

e−(Λij+θ)

1 + (e−θ − 1) e−Λij
=
∑

i>j

〈aij〉

where

aij =

{

1 if wij > 0
0 if wij = 0

For this model the system (1) becomes

∑

j 6=i

y

1 + (y − 1) xixj

xixj

1− xixj

= w̄i ∀i ∈ [1, . . . n] (11)

∑

i

∑

j 6=i

xixjy

1 + (y − 1) xixj

= l̄ (12)

which may be solved numerically to provide the values of the parameters.
The equilibrium probability distribution is

P ∗(W ∩ A) =
∏

i>j

e−[Λijwij+θaij ]

Z
=

=
∏

i>j

1− e−Λij

1 + (e−θ − 1)e−Λij
e−[Λijwij+θaij ]

=
∏

i>j

P ∗(wij ∩ aij)

9



From the latter expression we derive P ∗(wij|aij):

P ∗(wij|aij) =
P ∗(wij ∩ aij)

P ∗(aij)
= =

P ∗(wij ∩ aij)

〈aij〉

=

{

(1− e−Λij)e−[Λij(wij−1)] if aij = 1
δ(wij − 0) if aij = 0

Thus, if aij = 1 we still obtain a geometric distribution with wij ∈
{1, 2, . . . } and conditional expectation

〈wij|aij〉 =
〈wij〉
〈aij〉

=

{ 1

1− e−Λij
if aij = 1

0 if aij = 0
(13)

We remark that the 〈aij〉 obtained by solving conditional geometric mod-
els define fermionic models which are different from the Bernoulli networks
of sec. 2. These fermionic networks are labelled as conditional Bernoulli

networks.
In order to test this model, the system (11) - (12) was solved taking as

parameters the connectivity and the out- and in-strength distributions of the
neural network of the nematode C. Elegans, compiled by Watts & Strogatz
[18]. Fig. (1) shows that the resulting expected out-strength distribution fol-
lows the original strength data, while the out-degree distribution is placed,
so to speak, halfway between a Poisson distribution and the original degree
data. Analogous behavior is obtained for the in-strength and in-degree dis-
tributions.

3.2 Fixed strength and degree distributions

The main quantities for the model of [9] read:
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Figure 1: Out-strength distribution (Panel a) and out-degree distribution
(Panel b). In both panels the red continuous lines represent the ccdf com-
puted from original data of the C.Elegans dataset, the black crosses represent
the ccdf computed from the conditional expectations 〈w|A〉 given by eq. (13),
the blue circles represent the ccdf computed from the average of the different
〈w|A〉.

H(G) =
∑

i>j

[(λi + λj)wij + (θi + θj) aij] =
∑

i>j

[Λijwij +Θijaij]

Z =
∏

i>j

∞
∑

wij=0

e−[Λijwij+ΘijH(wij)] =
∏

i>j



1 +
∞
∑

wij=1

e−[Λijwij+Θij ]



 =

=
∏

i>j

(

1 + e−Θij
e−Λij

1− e−Λij

)

F = −
∑

i>j

ln

[

1 + e−Θij
e−Λij

1− e−Λij

]

〈wij〉 =
∂F

∂Λij

=
e−Θij

1 + (e−Θij − 1) e−Λij

e−Λij

1− e−Λij

〈aij〉 =
∂F

∂Θij

=
e−(Λij+Θij)

1 + (e−Θij − 1) e−Λij

where aij is defined as in the previous model. From the last equations we
may derive the following non-linear system
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∑

j 6=i

yiyj
1 + (yiyj − 1) xixj

xixj

1− xixj

= w̄i ∀i ∈ [1, . . . n] (14)

∑

j 6=i

xixjyiyj
1 + (yiyj − 1) xixj

= k̄i ∀i ∈ [1, . . . n] (15)

which may be solved numerically to provide the values of the parameters.
It’s easy to see that the expressions for P (wij ∩ aij), P (wij|aij) and 〈wij|aij〉
have the same shape of the previous model where Θij is substituted for θ.
The system (14) - (15) was solved using data taken from the C.Elegans
dataset. Fig. (2) shows that the resulting expected out-strength and out-
degree distributions follow the original data. Analogous behavior is obtained
for the in-strength and in-degree distributions.
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Figure 2: Out-strength distribution (Panel a) and out-degree distribution
(Panel b). In both panels the red continuous lines represent the ccdf com-
puted from original data of the C.Elegans dataset, the black crosses represent
the ccdf computed from the conditional expectations 〈w|A〉 given by eq. (13),
the blue circles represent the ccdf computed from the average of the different
〈w|A〉.

From Fig.(3) we see that l, when treated as independent variable, is
well approximated by a normal distribution, while v, when the strengths are
conditioned to a given topology, is approximated by a negative binomial,
although not perfectly since the wij are independent but non identically
distributed geometric variables. Also the equilibrium distribution is easily
adapted from the previous model:
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P ∗(W∩A) =
∏

i>j

P ∗(wij∩aij) =
∏

i>j

1− e−Λij

1 + (e−Θij − 1)e−Λij
e−[Λijwij+Θijaij ] (16)
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Figure 3: Panel (a): volume (v) distribution with negative binomial fit (v̄ =
8, 819). Panel (b): connectivity (l) distribution with normal fit (l̄ = 2, 345).

Eq.(16) can be used to compute the pmfs Pij(x). From the Panel (a) of
Fig. (4) we see that for a large majority of (i, j) we have that Pij(0) = 1, a
fact which is consistent with the sparsity of the original network. Panel (b)
shows instead that the pmfs vary from a delta-like function to a discontinuous
geometric-like distribution.

4 Comparison of models

Once we have at hand the solutions of different models for a given observed
network, it becomes possible to compare the performance of those models as
predictors of the real network from which they are derived. In particular, we
would like to have a testbed by which we can select among different mod-
els the one which better explains the observed network. Broadly speaking,
this task is accomplished either by testing globally the null hypothesis that
the observed network belongs to a given statistical ensemble, or by testing
simultaneously the null hypotheses that the wij are distributed according to
P ∗(wij). In both cases, the statistical ensemble acts as a null model for the
observed data 5.

5This approach has been recently applied to the analysis of world trade, see [6] and
references therein.
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Figure 4: Joint distribution: values of Pij(x = 0) ∀i, j (Panel a); Pij(x) for
different values of P (0) (Panel b).

In this comparison, I try to follow both the paths just mentioned. For
this purpose I use all the models solved above: Bernoulli (aka exponential
fermionic networks); geometric (aka exponential bosonic networks); condi-
tional geometric (CG1) and conditional Bernoulli (CG2) of sec. 3.1; condi-
tional geometric (CG2) and conditional Bernoulli (CG2) of sec. 3.2. Fur-
thermore, I introduce now an additional ensemble which can be labeled as
binomial networks. In fact, in this ensemble the wij are binomially distributed
with parameters v̄ and pij [2]. In the undirected case, the parameters pij are
obtained by solving the following maximum entropy problem, which is easily
adapted to the directed case:

max
p

g(p) = −
∑

i 6=j

pij ln pij (17)

subject to the following constraints:

∑

j 6=i

pij = r̄i

∑

i

∑

j 6=i

pij = 1

where r̄i = w̄i/v̄.
If we allow for self-loops we can obtain the following explicit solution [2]:

pij =
w̄iw̄j

v̄2
(18)
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from which we get

〈wij〉 =
w̄iw̄j

v̄
(19)

The identity between the latter expression and eq. (10) is remarkable, but
there are obvious differences: in the first place, the underlying distribution
of wij is changed from geometric to binomial; in the second place, no ap-
proximation is involved here, so that we don’t need to impose the constraint
〈wij〉 ≪ 1.

The fundamental property of binomial networks is that their expectation
matrix 〈W 〉 is close to a rank-1 matrix, and becomes exactly rank-1 if we
allow for self-loops (in fact, in this case, the rows and columns of 〈W 〉 are all
linearly dependent). For this reason the model is usually employed in order
to define a “community free” expectation of a bosonic, possibly directed,
network with given strength distribution. In fact, for the binomial ensem-
ble, Newman’s modularity function [13] (which is increasing in the expected
strength of communities within the network inasmuch as it is increasing in the
rank of 〈W 〉) is expected to be close to zero, with its expectation becoming
exactly equal to zero if we allow for selfloops 6.

Strictly speaking, this property is shared neither from the exponential
networks of section 2 nor from the conditional geometric networks of section
3. From fig. (5) we see that these models, and especially the one of section
3.2, display a number of relatively large normalized singular values7 when
compared with binomial networks, although in general the behavior of all
models looks pretty similar.

Since the 〈wij〉, in all these ensembles, are a function only of the strength
and degree distributions, the expectation matrices cannot be too different8.
The Frobenius distance matrices reported in table 1 confirm this claim, since
we see that all the normalized expectation matrices 〈K〉 are equally distant
from real data. Further we see that the binomial model is equally distant

6Thus, the binomial model is closely related to the growing field of community detection
in complex networks. For a detailed review of this topic, see [7].

7The normalization is obtained by introducing, e.g. for a undirected bosonic network,
the normalized matrix K = D−

1

2WD−
1

2 where D is a diagonal matrix with elements
{w1, w2, . . . , wn}. It’ possible to show that, if σ0(M) denotes the largest singular value
of a matrix M , then σ0(K) = 1 ∀K. For fermionic networks normalization becomes

K = D−
1

2AD−
1

2 , with D diagonal matrix with entries {d1, d2, . . . , dn}.
8In particular, the normalized expectation matrix 〈K〉 has in all models the same first

projection K0 = σ0u0 ⊗ v0, where u0 and v0 are the singular vectors associated with σ0

and ⊗ denotes the outer product. In fact, K0 depends only on the expected strength or
degree distributions [2], which remain the same in all models. If the other projections
don’t contribute too much, we can assume 〈K〉 ≈ K0.
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Figure 5: Comparison of the 50 largest normalized singular values of 〈W 〉
across different null models of the C.Elegans network.

from the others, and that the geometric and CM1 models are much closer to
each other than the CM2 model. Regarding fermionic models, we see instead
that Bernoulli and CB2 networks are closer than CB1 networks. The latter
fact is not surprising, since CB1 networks are not constrained by the degree
distribution.

As a first approximation, the global approach mentioned above can be
pursued by comparing the observed squared deviation of W , defined as S =
∑

i

∑

j 6=i(wij − 〈wij〉)2 with its expected value Σ =
∑

i

∑

j 6=i σ
2(wij) using

the Chebyshev inequality

P (S > λ) 6
Σ

λ
(20)

for λ > Σ. In some cases we can obtain sharper bounds employing the
normalized matrix K 9. Since in this case kij 6 1, we can use the following
symmetric inequalities [4]:

P (X 6 〈X〉 − λ) = P (X > 〈X〉+ λ) 6 exp

(

− λ2

2(‖X‖2 + λ/3)

)

(21)

9Of course, it is always possible to compute sharper p-values once we know at least
some approximation of the probability distribution of X =

∑

i

∑

j 6=i wij , like for instance
we did in fig. 3 (a). Otherwise it’s always possible to compute the probability distributions
from montecarlo simulations.
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Real data Binomial Geometric CG1 CG2

Real data 0 5.5437 5.5820 5.5773 5.5066

Binomial 5.5437 0 0.5072 0.5020 0.5214

Geometric 5.5820 0.5072 0 0.1171 0.7654

CG1 5.5773 0.5020 0.1171 0 0.7424

CG2 5.5066 0.5214 0.7654 0.7424 0

Real data Bernoulli CB1 CB2

Real data 0 5.3034 5.3234 5.2948

Bernoulli 5.3034 0 0.4036 0.1931

CB1 5.3234 0.4036 0 0.4321

CB2 5.2948 0.1931 0.4321 0

Table 1: Frobenius distance matrix of the normalized expectation matrices
〈K〉 for the listed bosonic and fermionic models and of real normalized data
K from the C.Elegans network.

where X =
∑

i

∑

j 6=i wij and ‖X‖ =
√

∑

i

∑

j 6=i〈w2
ij〉.

While the other models follow a known distribution, for the conditional
geometric models we need to compute 〈w2

ij〉. In the case of CM2 networks
the second moment 〈w2

ij〉 reads

〈w2
ij〉 =

(1 + e−Λij)

1 + (e−Θij − 1)e−Λij

e−(Λij+Θij)

(1− e−Λ)2
(22)

with straightforward adaptation for the CM1 model (eq. (22) is derived
in the appendix).

In table 2 we test the null hypothesis that the C.Elegans network belongs
to the ensembles G defined by the different null models. The p-values are
computed using eqs. (20) and (21) with the original and normalized data
respectively. We see that, with these approximate bounds, the null hypoth-
esis is rejected for the Binomial model only. It’s noteworthy that the test
over normalized variables appears to be more powerful only for the latter
model while the opposite holds for all the others. What is really interesting
in the normalized case is that S is more or less constant, a behavior which
is consistent with our previous remark that the expectations of the different
models are not very dissimilar, while Σ changes drastically across bosonic
models, and gets close to S for the conditional geometric models. This fact
shows that the latter provide a better statistical justification of the real net-
work in two ways: i) to a lesser extent, by adapting the 〈wij〉 as shown from
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fig. 5; ii) to a greater extent, by introducing a distribution which assigns
a higher probability to the observed wij against 〈wij〉 as we see from table
2. In the latter mechanism the connectivity constraint is essential, as it is
shown from the fact that the Bernoulli model, where this constraint holds by
construction, performs very well too.

Original variables (W ) Normalized variables (K)

Model S Σ pvalue S Σ pvalue

Bernoulli 2,123.42 2,082.77 0.9808 28.1269 27.9893 0.6246

Cond. Bernoulli (1) 2,184.33 2,200.28 - 28.3386 30.9062 0.6493

Cond. Bernoulli (2) 2,105.92 2,078.69 0.9870 28.0353 27.8394 0.6245

Binomial 91,949.37 8,816.54 0.0958 30.7336 6.3428 0.1560

Geometric 165,138.96 98,297.77 0.5952 31.1588 10.9522 0.3056

Cond. Geometric (1) 156,061.16 194,025.69 - 31.1067 30.5524 0.6218

Cond. Geometric (2) 77,860.65 124,797.55 - 30.3234 30.5087 0.6290

Table 2: Statistical tests against alternative null models (H0 : G ∈ G, where
G is the C.Elegans network).

As it turns out, a more accurate comparison of the null models is ob-
tained by following the second path outlined above, i.e. by using the known
probability distributions of the wij to test at once the null hypotheses that
the observed values are drawn from those distributions. This procedure is
nothing different from the so-called statistical validation of links, proposed
by [16]. Thus, if the null hypothesis is rejected, we say that the link is statis-
tically validated against the given null model. In order to validate the links of
an observed network with respect to a given null model, we must handle the
CDF F (x) of that model10. In fact, a link with integer weight x is validated
when F (x − 1) > 1 − α. Usually α is a threshold defined with the help of

Bonferroni correction. In our case, we set α =
0.01

n(n− 1)
. From table 3 we

see that none of the links of the original network are validated against the
conditional geometric models, confirming the previous claim that the latter
fit better with real data than other models for bosonic networks. Regarding
fermionic networks, we observe instead that the Bernoulli model performs in
this setting as well as the two more complex alternatives.

10For the derivation of CDFs in the case of geometric and conditional geometric models
see the appendix.

18



Model Uncorrected Bonferroni
(α = 1e−2) (α = 1.14e−07)

Bernoulli 102 0
Cond. Bernoulli (1) 102 0
Cond. Bernoulli (2) 100 0
Binomial 86,878 275
Geometric 1,016 120
Cond. Geometric (1) 527 0
Cond. Geometric (2) 399 0

Table 3: Statistically validated links of the C.Elegans dataset against differ-
ent null models.

5 Conclusive Remarks

All the models presented in sec. 2 and 3 rely on the same basic principle of
equilibrium statistical mechanics, the maximization of Gibbs entropy. When
we maximize the Lagrangean (2), we obtain the most likely distribution P ∗

which is consistent with the given constraints. In fact, P ∗ is associated by
construction with the greatest number of market configurations. As a con-
sequence, if the market is undisturbed by outside shocks, it will converge to
P ∗ from any initial distribution P0. In particular, when the model is con-
strained as in sec. 3.2, P ∗ has the peculiar property to make it most likely for
market participants to allocate their expected supply and demand through
their expected number of buy and sell relationship. In this sense, the condi-
tional geometric model of sec. 3.2 realizes efficiently agents’ expectations, in
whichever way the latter are obtained. We can say that this model is neutral

with respect to expectations.
On the other hand, the results of sec. 4 show that entropy maximiza-

tion by itself is not sufficient to turn a model into a good predictor of real
networks. For instance, it is well known that some ME models, like bino-
mial networks, return unrealistic dense networks [12]. Instead, conditional
geometric networks overcome this major weakness by construction, thus pro-
viding a significant improvement with respect to known ME techniques. In
particular, in sec. 4 I have compared conditional geometric networks with
other models obtained through entropy maximization with reference to the
same real network. This comparison suggests that the conditional geometric
model is able to provide more reliable ME estimates of unknown markets or
networks whenever both the strength and degree distributions of agents are
known. [11][17]
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6 Appendix

6.1 Derivation of equation (22)

In order to obtain 〈wij〉 for the GM2 model (sec. 3.2) we can use the following
general relationship:

− ∂2F

∂Λ2
ij

= σ2(wij) (23)

In fact, remembering that Z =
∑∞

0 e−Λijw, we have that

− ∂2F

∂Λ2
ij

= − ∂

∂Λij

(

1

Z

∞
∑

0

we−Λijw

)

=

=
1

Z

∞
∑

0

w2e−Λijw − 1

Z2

(

∞
∑

0

we−Λijw

)2

=

= 〈w2
ij〉 − 〈wij〉2
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which implies

〈w2
ij〉 = −

1

Z

∂

∂Λij

(

∞
∑

0

we−Λijw

)

(24)

In our case, we obtain

〈w2
ij〉 = −

1− e−Λij

1 + (e−Θij − 1)e−Λij

∂

∂Λij

[

e−(Θij+Λij)

(1− eΛij)2

]

=
(1 + e−Λij)

1 + (e−Θij − 1)e−Λij

e−(Λij+Θij)

(1− e−Λ)2

6.2 Derivation of the CDF and quantile function

For the GM2 model (sec. 3.2) the following CDF is obtained:

F (x) =
x
∑

w=0

1− e−Λij

1 + (e−Θij − 1)e−Λij
e−[Λijw+ΘijH(w)] =

=
1− e−Λij

1 + (e−Θij − 1)e−Λij

(

1 + e−Θij

x
∑

w=1

e−Λijw

)

=

=
1− e−Λij

1 + (e−Θij − 1)e−Λij

[

1 + e−Θij

(

1− e−Λij(x+1)

1− e−Λij
− 1

)]

=

=
1− e−Λij + e−[Λij+Θij ]

(

1− e−Λijx
)

1 + (e−Θij − 1)e−Λij
=

= F (0) + 〈aij〉
(

1− e−Λijx
)

The quantile function is obtained simply by inversion

x =







0 if F 6 F (0)
log〈aij〉 − log (〈aij〉+ F (0)− F )

Λij

if F > F (0)
(25)

Using eq. (25) it’s possible to create random variables distributed accord-
ing to the pmf defined by eq. (16). All of these functions have straightforward
adaptations for the model of Sec. 3.1 . In the case of the model of section 2,
instead, the CDF is geometric:

F (x) = 1− e−Λij(x+1) (26)

and the quantile function reads
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x = max

(

log(F − 1)

Λij

− 1, 0

)

(27)
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