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This work deals with methodological and empirical issues related to multiperiod 
optimal hedging OLS estimators. We propose an analytical formula for the multiperiod 
minimum variance hedging ratio starting from the triangular representation of a 
cointegrated system DGP. Since estimating the hedge ratio  matching  the frequency  
of data with the hedging horizon leads to a sample size reduction problem, we carry 
out a Monte Carlo study to investigate the pattern and hedging efficiency of OLS 
hedging ratio based on overlapping vs non-overlapping observations exploring a  
range of hedging horizons and sample sizes. Finally, we applied our approach to real 
data for a cross hedging related to soft wheat. 
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Introduction 

The first decade of the new millennium has been characterized by a sustained 

volatility of world cereal prices. Although it is not clear whether the rise in volatility is 

short-lived or instead reveals a structural change (Gilbert and Morgan 2011), its 

impact on the farming industry is relevant for the time being as it has increased the 

risk producers face. The rationale behind this article stems from a practical problem 

faced by the food industry and cereal producers in a particular EU region when 

implementing forward contracts along the bread food chain. The contracts offered by 

the industry provide farmers with a hedging instrument through which they can 

reduce the price risk they face. In its own turn, the food industry needs to hedge with 

futures the price risk it assumes when issuing forward contracts. As the forward 

contracts with farmers need to be signed in October to expire the following June, the 

hedging horizon spans more than 6 months. We hypothesize that the food industry 

can cross-hedge its long term buying commitment by selling soft wheat futures 

contracts exchanged on the French MATIF (Marché a Terme Internationale de France). 

The described risk managing problem calls for an estimation of the optimal hedging 

ratio (OHR) based on the available weekly prices. Most of the studies on hedging deal 

with the derivation of OHR under different utility functions or the methodological 

aspects of OHR estimation under different hypotheses about the data generation 

processes (DGP) behind the observed price series. However, as noted by Chen, Lee 

and Shrestha (2004, p.360) many empirical studies “ignore the effect of hedging 

horizon length on the optimal hedging ratio and hedging effectiveness”.  

We contribute to this literature in three ways. Firstly, we derive an analytical formula 

for the multiperiod minimum variance hedging ratio (MVHR) starting from the 

triangular representation of a co-integrated system, a representation that has not yet 

been explored in this context. Secondly, using both overlapping and non-overlapping 

price changes we investigate the properties of OLS or textbook MVHR estimators and 

discuss the sample reduction problem for longer hedging horizons. Thirdly, we resort 

to simulated data to investigate the performance of MVHR estimators. In contrast to 

previous studies, we do not use real data whose DGP is unknown; instead we run a 

Monte Carlo exercise to investigate our estimators and compare them with the 

theoretical measures. Only after that do we estimate the hedging ratio on real data 

and discuss results in the light of the outcome of the previous steps. 

The article is set out as follows: first we offer a brief literature review of multiperiod 

hedging ratios and we discuss the issues still to be explored and state the research 



objectives. The section that follows is about the development of a triangular 

representation of a prototypical error correction model (ECM) from which an analytical 

formula for multiperiod MVHR is derived. Next, we report results of the Monte Carlo 

exercise investigating OLS estimators and comparing them with theoretical measures. 

In addition, we report results of the empirical analysis conducted using real rather 

than simulated data, by evaluating a cross-hedge for soft wheat. Finally, we report 

our main conclusions. 

 

Multiperiod hedging: literature review, unsolved problems and unexplored 

issues 

Theoretical and empirical issues related to the determination and estimation of 

optimal hedge ratio (OHR) (the size of the futures contract relative to the hedged cash 

transaction) and hedging effectiveness (HE) (the extent to which hedging actually 

reduces portfolio risk) have received considerable interest in the futures literature1. 

In spite of such interest on broad hedging issues, literature concerning the 

relationship between the hedge ratio and the hedging horizon has been scanty, even 

though it appears to have important implications for the use of derivatives in 

commodity hedging. 

Few studies consider the effect of longer horizons on optimal hedge ratio and hedge 

effectiveness. One such study, Ederington (1979), empirically compares the 

effectiveness of MVHRs for different hedging horizons. The issue is re-examined in 

Malliaris and Urrutia (1991), who use an autoregression (AR) model, instead of simple 

OLS, in order to deal with autocorrelation among residuals. Other empirical studies 

include Benet (1992), Chou, Fan and Lee (1996) and Lee et al. (2009). 

A second group of studies such as Howard and D’Antonio (1991), Lien (1992), 

Geppert (1995) and Juhl, Kawaller and Koch (2012) try to model the relationship 

between the hedge horizon and the OHR and HE deriving analytical formulae that are 

valid for the assumed DGP.  

Generally, both MVHR and HE have been found to be increasing in the hedging 

horizons with the former tending to the naïve  hedging ratio of 12. As the hedging 

horizon increases, the short-term noises are smoothed out, and spot and futures 

prices are closer to each other, resulting in a larger hedge ratio. Moreover, the spot 

price series become noisier as the hedging horizon increases and a bigger spot-price 

risk tends to increase the HE. 



The first issue that emerges from the literature is the sensitivity of results to how the 

relationship between spot and futures prices is modeled. Geppert (1995) works on the 

Stock-Watson common trend representation, whereas Lien (1992) and Juhl, Kawaller 

and Koch (2012) use the error correction representation. Geppert (1995) finds that 

the limit of the hedge ratio as the hedging horizon goes to infinity is equal to the 

futures price coefficient in the co-integrating vector (which is not necessarily 1) while 

the degree of HE tends to 1. 

Lien (1992) derives the expression for his multiperiod hedging ratio by solving a 

dynamic programming problem for a finite time series, therefore he does not provide 

the limit of the hedging ratio for k - the number of periods - going to infinity. However, 

the multiperiod hedging ratio calculated with empirically estimated parameters shows 

a cyclical pattern as the horizon lengthens.  

Juhl, Kawaller and Koch (2012) find that, as the hedge horizon lengthens OHR and HE 

come close to one for co-integrated series. Noticeably, the hedging ratio in Juhl, 

Kawaller and Koch (2012) is based on conditional (on the error correction term), 

rather than unconditional variances. 

In order to validate the models, theoretical measures are often compared with 

empirical estimates on real spot and futures series. However, unless we are sure that 

our model truly represents the DGP underlying the observed real data, we cannot use 

real data to compare or validate alternative estimates of the hedging ratio against the 

results from the formula analytically derived within our model. The question of which 

estimator of the multiperiod OHR provides the best unbiased and efficient estimates 

should be addressed only when working with data generated by the very model which 

provides a benchmark measure for the hedging ratio. 

Hypothesizing a given GDP which is not supported by the data leads to misspecified 

estimators of the OHR even though this approach may prove useful to get an idea of 

how MVHR and HE evolve with the hedging horizon. To this purpose the model should 

be as simple as possible whilst still accounting for the basic features of real data such 

as co-integration. 

The use of real data gives rise to a second methodological issue: to get empirical 

estimates it is necessary to match the frequency of data with the hedging horizon, 

whereupon we face the problem of sample size reduction. Indeed, a trade-off arises 

between working on overlapping observations thereby maintaining an adequate 

sample size as the hedge horizon lengthens, but inducing a moving average process in 

OLS residuals, or else resorting to non-overlapping observations, thus facing a 



dramatic reduction in sample size for longer hedging horizon. Authors differ widely in 

the solutions they propose. 

Geppert (1995) estimates OHR by the classical Ederington (1979) OLS method. He 

resorts to using overlapping observations to account for the induced autocorrelation in 

residuals with a two stage GLS estimator. 

Lien and Luo (1993) calculate OHR with the Lien (1992) formula, drawing on single 

period estimates of an ECM, thus bypassing the problem incurred with degrees of 

freedom. 

Other researchers use wavelet multiscaling techniques in order to overcome the 

sample reduction issue3. In a minimum-variance framework, In and Kim (2006) and 

Lien and Shrestha (2007) show that wavelets allow the determination of a unique 

hedge ratio associated with different hedging horizons and that S&P index hedgers 

achieve greater effectiveness at longer horizons. 

Chen, Lee and Shrestha (2004) compare OLS and a modified ECM (where both short 

and long term OHR are simultaneously estimated) estimate of OHR across a number 

of time horizons using non-overlapping data. They state that having quite a large 

sample size available they don't need to resort to overlapping data. 

Juhl, Kawaller and Koch (2012) compare OLS and modified (as in Ghosh (1993)) ECM 

estimates of the hedging ratios using non-overlapping data for price changes of 

growing length (from 1 day to 6 months). Not unexpectedly, with a sample size of 27 

months, the authors state that the “paucity of data at long horizons represents the 

major limitation for a hedger conducting this analysis” (p.865). 

Surprisingly, after Geppert (1995), the simplest way to address this problem, which is 

the use of overlapping data, has been overlooked by the multiperiod hedging 

literature. Actually, according to Hansen and Holdrick (1980) and Hansen (1992), the 

overlapping OLS estimator is more efficient than the corresponding non-overlapping 

one.  

Finally, there is scant literature on hedging horizons applied to agricultural commodity 

markets even though farmers need to hedge for long (generally lasting several 

months) horizons depending on the crop produced (see, e.g., See Chen, Lee and 

Shrestha (2003) and Lien and Shrestha (2007)). Mathews and Holthausen (1991) and 

Myers and Hanson (1996) provide a dynamic strategy for multiperiod hedging and 

estimate dynamic optimal hedging ratios for a number of agricultural commodities, 

however they do not touch on the issue of a relationship between hedging horizon and 

MVHR. A notable exception is Revoredo-Giha and Zuppiroli (2013), who provide an 



empirical comparison of MVHR across different time horizons and futures contracts for 

the European cereal sector. 

In the next section we propose a Monte Carlo study to investigate the pattern and 

hedging efficiency of both overlapping and non-overlapping OLS hedging ratios for 

different hedging horizons and different sample sizes4. Our work differs from previous 

studies since it consistently explores the behaviour of hedging ratio estimators within 

the hypothesized DGP which provides benchmark measures. In addition, Monte Carlo 

simulations allow us to explore the performance of hedging ratio estimators when the 

sample size lengthens without the interference of confounding factors which may 

appear in real data. 

 

The model: a prototypical ECM 

As in Jhul, Kawaller and Koch (2012), we consider a cross hedge with a price yt for a 

commodity at the time it will be delivered to a given location and the corresponding 

futures price xt for future delivery of the same commodity to a different location. We 

assume that the two prices are co-integrated with xt weakly exogenous. To make 

analytical derivation simpler, we also assume that the futures price is a purely random 

walk. The vector error correction representation of the co-integrated system is thus 

given by: 

(1)   
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where tε  and tu  are jointly white noise, possibly contemporaneously correlated. 

Differently from Lien (1992) and Juhl, Kawaller and Koch (2012) we reparameterize 

the vector ECM in (1) to the Phillips’s (1990) triangular representation of the 

cointegrated system: 
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The triangular representation facilitates both simulations of the cointegrated system 

(Zivot 2006) and derivation of a formula for the MVHR. The resulting model is close to 

the one employed by Jhul, Kawaller and Koch (2012) although under a different 

parameterization and without the restriction of the co-integration coefficient β being 

equal to 1. 

According to Ederington (1979) also known as the “textbook solution”, the MVHR, is 

given by: 

(4)   
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where k∆  is the difference operator over k periods5. 

We are interested in comparing the performance of simple OLS estimators of MVHR(k) 

using the Ederington unconditional HE measure. However, we note that when xt 

follows a random walk, conditional and unconditional hedge ratios are equal (Lien 

2005).  

MHVHR can be easily expressed as a function of the triangular representation 

parameters for different values of k.  

After some relatively straightforward algebra (see Appendix A) we get: 
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while for ∞→k  the limit of (5) is β, that is the long term hedge ratio (as in Chen, Lee 

and Shrestha (2004)). 

The Ederington HE measure is given by (see appendix A): 
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whose limit for ∞→k  is 16, as in Geppert (1995) and Juhl, Kawaller and Koch (2012). 



Summing up, the analytical derivation of MVHR(k) for co-integrated prices under the 

triangular representation parallels the results of models developed under other 

representations (ECM or common trend) with a relatively more straightforward 

algebra. In addition, the triangular representation is particularly convenient to 

simulate the series as it will be illustrated in the next section. 

 

Monte Carlo Analysis 

We run Monte Carlo simulations from the triangular representation of a co-integrated 

system given in equations (2) and (3). We start from the ECM parameterization and 

generate a bivariate error series from a bivariate normal with parameters: 


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Then, we generate the error series η in the triangular representation as: 

tt βενη −=  

with the parameter β set to 0.92. Next, the error ut in equation (3) is simulated as an 

AR(1) process with innovations η and parameter αφ += 1  set to 0.88. All parameter 

values are chosen in the proximity of values obtained by estimating the system 

equations (1) with real data on Italian wheat spot and French MATIF futures prices. 

We then take both the overlapping and the non-overlapping k-period differences of 

the simulated series and estimate the linear model: 

ttktk yy εβα +∆+=∆    for t=1…T        (7) 

We run Monte Carlo simulations using a variety of values for hedging horizon (k) and 

for the sample period (T) resulting in different scenarios7. 

The sample period T ranges from 360 to 2880. Series of double that length are 

actually generated (from 720 to 5760), the first half being employed to estimate β, 

and the second to recover an out-of-sample HE measure8. 

The hedging horizon ranges from 1 to 36 weeks. 

For each scenario and for each draw, we then take both the overlapping and the non-

overlapping k-period differences of the simulated series and estimate the linear model 

(7 

We report the bias, standard deviation and root mean squared error (RMSE) of OLS 

estimates of β, as well as the related OLS standard error and R2 estimates. For 

overlapping observations we also report the truncated kernel autocorrelation 

consistent standard errors (HAC)9 in order to take into account the autocorrelation of 

OLS residuals. 



In table 1 we report estimates for overlapping observations. As expected, both hedge 

ratio and R2 increase with k, the hedging horizon. Estimates exhibit a small downward 

bias, which grows with k but decreases to negligible values with T, the sample size. As 

expected, OLS standard errors are not appropriate because of the induced serial 

correlation of the OLS residuals. HAC standard errors, in this case, provide a better 

approximation. R2 and out-of-sample HE show close values as expected given the 

same DGP underlying both in sample and out-of-sample observations. 

Table 2 reports values for non-overlapping observations that basically show the same 

pattern seen in the overlapping case with respect to k and T. However, non-

overlapping observations exhibit higher β values and R2 values although the difference 

shrinks with higher values of T. Interestingly, non-overlapping observations exhibit a 

lower bias, this time upwardly. Finally, the difference between the overlapping and 

non-overlapping estimates of β and R2 decreases as the sample period T increases. 

The most striking difference between OLS estimates with overlapping and non-

overlapping observations is the strong rise in the Monte Carlo standard deviation of β 

that we observe with non-overlapping observation. For higher values of k and lower T 

standard deviation of β is more than double when estimated with overlapping 

observations. Figure 1 illustrates both the pattern of β mean estimates and variability 

as k varies in the case of the smaller and the larger sample sizes employed in the 

Monte Carlo exercise. It is clear that the OLS estimates of MVHR on non-overlapping 

observations are far less efficient when T is small and k large. This comes as no 

surprise since Hansen and Holdrick (1980) demonstrate that the asymptotic standard 

errors for βov are smaller than those for βnon-ov.  

 

 

 

 

 

 

 

 

 

 



 

Note: Vertical bars are at 2 standard deviation above and below the mean values. 

Figure 1. Monte Carlo simulation: means and standard deviations of betas 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1. OLS with overlapping observations 
 

T k  Mean Std. Dev Std. HAC Std. Bias RMSE R2 Out of Sample 

          Hedg. Effectiv. 

1  0.198 0.031 0.031 0.031 -0.002 0.031 0.104 0.099 

6  0.373 0.060 0.032 0.073 -0.011 0.061 0.284 0.269 

12  0.509 0.073 0.030 0.090 -0.018 0.076 0.448 0.429 

18  0.596 0.077 0.029 0.093 -0.024 0.081 0.559 0.539 

24  0.653 0.079 0.027 0.091 -0.028 0.084 0.633 0.615 

30  0.693 0.079 0.026 0.088 -0.031 0.085 0.686 0.668 

3
6
0
 

36  0.721 0.079 0.024 0.085 -0.034 0.086 0.723 0.706 

1  0.199 0.022 0.022 0.022 -0.001 0.022 0.104 0.102 

6  0.379 0.043 0.022 0.053 -0.005 0.043 0.289 0.282 

12  0.519 0.052 0.021 0.065 -0.009 0.052 0.457 0.449 

18  0.609 0.053 0.020 0.067 -0.011 0.055 0.572 0.564 

24  0.669 0.053 0.018 0.065 -0.013 0.054 0.651 0.644 

30  0.710 0.051 0.017 0.062 -0.014 0.053 0.707 0.701 

7
2
0
 

36  0.740 0.050 0.016 0.059 -0.015 0.052 0.747 0.742 

1  0.200 0.016 0.015 0.015 0.000 0.016 0.104 0.103 

6  0.382 0.030 0.016 0.038 -0.002 0.030 0.292 0.288 

12  0.523 0.036 0.015 0.046 -0.004 0.036 0.463 0.458 

18  0.614 0.037 0.014 0.047 -0.006 0.037 0.581 0.576 

24  0.675 0.036 0.013 0.046 -0.006 0.036 0.662 0.657 

30  0.718 0.034 0.012 0.044 -0.007 0.035 0.718 0.714 

1
4
4
0
 

36  0.748 0.033 0.011 0.041 -0.007 0.034 0.759 0.756 

1  0.200 0.011 0.011 0.011 0.000 0.011 0.104 0.103 

6  0.383 0.021 0.011 0.027 -0.002 0.021 0.293 0.291 

12  0.526 0.025 0.011 0.033 -0.002 0.025 0.466 0.463 

18  0.617 0.026 0.010 0.033 -0.003 0.026 0.584 0.581 

24  0.679 0.025 0.009 0.032 -0.003 0.025 0.666 0.663 

30  0.721 0.024 0.008 0.031 -0.003 0.024 0.723 0.721 

2
8
8
0
 

36  0.751 0.023 0.008 0.029 -0.004 0.024 0.765 0.762 

 
Note: T is the length of the simulated series, the number of available observations for OLS is given by T/k.



Table 2. OLS with  non overlapping observations 

 
T k  Mean Std. Dev Std. Err. HAC Std. Err. Bias RMSE R2 Out of Sample 

          Hedg. Effectiv. 

1  0.198 0.031 0.031  0.001 0.001 0.104 0.099 

6  0.375 0.078 0.079  0.006 0.009 0.289 0.264 

12  0.514 0.107 0.108  0.012 0.018 0.458 0.418 

18  0.605 0.126 0.126  0.016 0.026 0.572 0.522 

24  0.661 0.139 0.138  0.019 0.031 0.649 0.595 

30  0.702 0.152 0.149  0.023 0.038 0.701 0.642 

3
6
0
 

36  0.738 0.167 0.158  0.028 0.051 0.742 0.675 

1  0.199 0.022 0.022  0.000 0.001 0.104 0.102 

6  0.379 0.056 0.055  0.003 0.004 0.290 0.280 

12  0.520 0.074 0.075  0.005 0.008 0.461 0.444 

18  0.611 0.085 0.085  0.007 0.011 0.578 0.558 

24  0.674 0.095 0.092  0.009 0.014 0.659 0.635 

30  0.715 0.098 0.097  0.010 0.015 0.714 0.691 

7
2
0
 

36  0.744 0.103 0.101  0.011 0.017 0.752 0.730 

1  0.200 0.016 0.015  0.000 0.000 0.104 0.103 

6  0.382 0.038 0.039  0.001 0.002 0.293 0.287 

12  0.525 0.052 0.052  0.003 0.004 0.466 0.456 

18  0.618 0.059 0.059  0.003 0.005 0.585 0.572 

24  0.679 0.063 0.063  0.004 0.006 0.666 0.653 

30  0.721 0.066 0.066  0.004 0.007 0.721 0.710 

1
4
4
0
 

36  0.751 0.068 0.068  0.005 0.007 0.764 0.751 

1  0.200 0.011 0.011  0.000 0.000 0.104 0.103 

6  0.383 0.027 0.027  0.001 0.001 0.293 0.290 

12  0.526 0.036 0.037  0.001 0.002 0.467 0.462 

18  0.618 0.041 0.041  0.002 0.002 0.585 0.580 

24  0.680 0.045 0.044  0.002 0.003 0.668 0.661 

30  0.723 0.045 0.046  0.002 0.003 0.726 0.719 

2
8
8
0
 

36  0.753 0.047 0.047  0.002 0.003 0.767 0.760 

 
Note: T is the length of the simulated series, the number of available observations for OLS is given by 

T/k .



An Empirical application: Italian spot price and MATIF wheat futures 

 

We also conduct an empirical analysis using real rather than simulated data. We 

consider a cross hedge for soft wheat: the two locations for spot and for the 

commodity specification underlying the futures contracts exchanged on the MATIF10 

market being respectively Bologna (Italy) and Rouen (France) (see figure 2). 

 

 

 
 

Source: Authors’ elaboration of data from Bloomberg and ISMEA. 

 
Figure 2. Spot and future series 

 

 

The futures contract used in the article is the nearest-to-maturity contract and it is 

rolled over to the next contract on the first day of the month when the contract 

expires. In order to see the impact of the length of hedging horizon, the same data 

frequencies used in the previous section (ranging from 1 to 36 weeks) are examined. 

Data are weekly prices from the 2nd week of 2000 to the 47th week of 2012 amounting 

to 670 observations. 

 

Co-integration 

Both spot and futures series are first tested for unit roots. We fail to reject the null 

with Augmented Dickey-Fuller test (ADF)11 and we reject it with the Kwiatkowsky, 

Phillips, Schmidt e Shin test (KPSS) suggesting that the series in level are non 

stationary at the 5% significance level (see table 3). The same test on the series in 

differences provides rejection of the null of non stationarity with ADF and failure to 



reject the null of stationarity with KPSS suggesting that both the futures and spot 

prices are I(1) .  

 

 

Table 3. Unit Root and Cointegration Tests on Futures and Cash Prices 

ADF test 

 level differences 

 ADF 5% CV ADF 5% CV 

Futures (MATIF) -2.831 -3.41 -23.352 -3.41 

Spot (Bologna) -2.917 -3.41 -12.741 -3.41 

 

KPSS test 

 level differences 

 mu 5% CV mu 5% CV 

Futures (MATIF) 5.591 0.463 0.107 0.463 

Spot (Bologna) 5.709 0.463 0.122 0.463 

 

 

Co-integration is tested by carrying out the Johansen trace test for the null hypothesis 

of the presence of at least r co-integration vector12. Trace test is performed for the 

presence of 1 or 0 co-integration vectors including a constant in the co-integration 

relationship. The trace test (table 4) suggests the presence of one co-integrating 

vector. 

 

 

Table 4. Johansen Cointegration Tests on Futures and Cash Prices 

 Johansen Trace test 

Series Lags Trace Test 5% CV H0 

2.00 9.24 r<=1 Spot (BO)-

Futures 
11 

20.42 19.96 r=0 

 
 

 



Table 5 provides estimates of the co-integrating vector and loading coefficients (that 

is the coefficients of the error correction term in the spot and futures price changes 

equations) with their standard errors. According to these estimates, futures prices 

seem to be weakly exogenous as previously hypothesized. 

 

 

Table 5. Long Term Relationship and Loadings 

Cointegration Vector Loadings 

const 31.57 (6.92) α (Spot eq.) -0.05 (0.01) 

Futures 0.93 (0.04) α (Fut eq.) -0.01 (0.02) 

 

 

We then go on to estimate the prototypical single equation ECM for the spot price 

change. Not surprisingly, the model, being very simple, turns out to be misspecified. 

In particular, residuals serial correlation is severe and the log-likelihood is far lower in 

comparison with a model that includes 10 lagged values for both spot and futures 

price changes. However, we retain an estimate of -0.12 for the coefficient of the 

lagged error correction term to be used in the Monte Carlo exercise. 

 

Table   6 ECM estimation 
 

  
ECM  

 Prototypical 

ECM 

 Coef Std. Err  Coef Std.Err. 

      

ECT(-1) -0.0454 0.0110  -0.12 0.01 

∆spot(-1) 0.3222 0.0415    

∆spot(-2) 0.0763 0.0435    

∆spot(-3) -0.1333 0.0434    

∆spot(-4) 0.1582 0.0437    

∆spot(-5) 0.0047 0.0440    

∆spot(-6) -0.1228 0.0439    

∆spot(-7) 0.1291 0.0433    

∆spot(-8) -0.0643 0.0427    

∆spot(-9) -0.0732 0.0416    
∆spot(-
10) 0.1346 0.0354 

 
  

∆fut(-1) 0.1798 0.0179    

∆fut(-2) 0.1069 0.0208    

∆fut(-3) 0.0454 0.0213    

∆fut(-4) -0.0453 0.0212    



∆fut(-5) 0.0010 0.0212    

∆fut(-6) 0.0406 0.0211    

∆fut(-7) 0.0120 0.0207    

∆fut(-8) -0.0208 0.0207    

∆fut(-9) -0.0386 0.0205    

∆fut(-10) -0.0157 0.0201    

      

LogLik 
-

1519.64  
 -

1730.67  

DW 1.99   0.94  

 

 

Hedge Ratios and Hedging Effectiveness 

The results of the hedge ratios for various hedging horizon lengths are shown in table 

7. The hedge ratio (the β coefficient) increases with the hedging horizon13. Noticeably, 

the hedge ratios for longer horizons are larger than the futures coefficient in the long 

term relationship which is 0.92. This contradicts the findings of the modelling section 

concerning the limit of the MVHR when the hedging horizon grows to infinity. This 

evidence points out how misleading it can be to validate a theoretical model for MVHR 

with data that do not strictly follow the assumed DGP, a danger we avoided by using 

data from a Monte Carlo simulation. 

Non-overlapping hedge ratios are slightly higher than overlapping hedge ratios and do 

not grow monotonically with k (figure 3): a feature already observed by Geppert 

(1995). Non overlapping standard errors are sensibly higher confirming the findings 

by Hansen and Hodrik (1980) about sample size reduction associated with non 

overlapping observations reducing efficiency in OLS estimates. 

In addition, R2 statistics for longer horizons is well above 0.80, which is considered by 

the US accounting standards to be a condition for hedging to be effective in offsetting 

a particular exposure (see Juhl, Kawaller and Koch 2012). 

At least in the overlapping case, the overall pattern of evolution of MVHR estimates as 

the hedging horizon grows is similar for both real and simulated data. In particular, 

MVHR shows a monotonic increase in both cases, with diminishing increments as k 

grows. 

 

 

 

 

 



Table 7. Estimates of MVHR: MATIF Wheat Future and Bologna Spot Wheat 

   overlapping obs.  non ovelapping obs. 

T k  β Std. Err. 
HAC 

Std. Err. 
R2  β Std. Err. R2 

1  0.195 0.022 0.038 0.106  0.195 0.022 0.106 

6  0.667 0.022 0.085 0.575  0.794 0.056 0.651 

12  0.806 0.020 0.081 0.722  0.781 0.064 0.736 

18  0.881 0.018 0.046 0.788  0.979 0.064 0.870 

24  0.938 0.016 0.049 0.842  0.965 0.080 0.855 

30  0.949 0.015 0.046 0.868  0.874 0.065 0.899 

6
7
0
 

36  0.960 0.013 0.044 0.895  0.986 0.057 0.949 
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Note: Vertical bars are at 2 standard errors above and below the point estimates 

Figure 3. Overlapping vs non overlapping OLS estimates of MVHR: real data 

 

 

Conclusions 

This article has dealt with both methodological and empirical issues concerning the 

multiperiod OHR. Hypothesizing a given GDP, when the data do not actually follow it, 

leads to misspecified estimators of the OHR even though this approach can be useful 

to have an idea of how MVHR and hedging effectiveness evolve with hedging horizon. 

To this purpose, we have proposed analytical formula for the multiperiod MVHR 

starting from the triangular representation of the co-integrated system DGP. 



In addition, empirically estimating the OHR matching the frequency of data with the 

hedging horizon leads to the problem of sample size reduction. Thus, we have 

proposed a Monte Carlo study to investigate the pattern and hedging efficiency of 

both overlapping and non-overlapping OLS hedging ratios for different hedging 

horizons and different sample sizes. 

Finally, we have carried out our empirical estimation of the hedging ratio by 

considering a cross hedge scheme for soft wheat, with futures contracts exchanged on 

the French MATIF (Marche a Terme International de France) market. 

The Monte Carlo exercise shows that, as expected, both hedge ratio and R2 increase 

with the hedging horizon. OLS standard errors with overlapping observations are not 

appropriate because of the induced serial correlation of the OLS residuals. 

Interestingly, the difference between the overlapping and non-overlapping estimates 

of beta and R2 increases as the sample period decreases. 

The most striking difference between OLS estimates with overlapping and non-

overlapping observations is the strong rise in the Monte Carlo standard deviation of 

hedge ratios that we observe with non-overlapping observation. Thus, it becomes 

clear that the OLS estimates of MVHR on non-overlapping observations are far less 

efficient when sample sizes are small and the hedging horizon long. 

Non-overlapping hedge ratios are slightly higher than overlapping hedge ratios, while 

the variance is slightly lower in the latter case. It is also found that hedging 

effectiveness increases with the length of hedging horizon. 

Empirical application with real data reveals again that the variance of the hedge ratios 

with non-overlapping observations is slightly higher than in the case of overlapping 

observations, confirming that OLS estimates of MVHR with robust standard error on 

overlapping observations are more efficient when the hedging horizon is long and the 

sample size not sufficiently large. 

As our article differs majorly from previous studies, since it consistently explores the 

behaviour of MVHR estimators within the hypothesized data generating process, not 

only eliminating the sample size reduction problem but actually exploring the 

performance of hedging ratio estimators when the sample size varies, we think that 

this article succeeds in highlighting and clarifying some methodological and empirical 

issues related to multiperiod hedging.  

Indeed, the double estimate with simulated and real data have highlighted how 

misleading it could be to validate a theoretical model for MVHR with data that do not 



strictly follow the assumed DGP. The Monte Carlo exercise enabled us to avoid such 

danger.  

However, we think that this article mainly provides a practical contribution to hedging 

activities. Indeed, the results we have obtained allow us to give preference to results 

with robust variance and covariance estimates for overlapping observations instead of 

estimates for non-overlapping ones. The problem of sample size reduction, indeed, 

appears to be a major issue. Thus, we think we have provided a real compromise 

between sophisticated methods against sample reduction (e.g. wavelet analysis) and 

straightforward estimations: we think that such a compromise could be particularly 

useful for hedgers.  

Future research could focus on providing more complex DGPs (for example, by 

inserting the lagged price differences) in order to see how different DGPs impact 

results. Moreover, future efforts could be directed towards comparing results obtained 

through other estimators, such as the ECM à la Gosh (1993).  

 

 

Notes 

1 For a detailed review of theoretical and empirical issues about the optimal hedge 

ratio see, for example, Chen, Lee and Shrestha (2003). 

2 An exception is Lien and Luo (1993). 

3 Wavelets allows to decompose a time-series in both time and frequency. 

4 We limit ourselves to the investigation of OLS estimators since we are interested in 

unconditional hedging effectiveness, against this criterion OLS hedge ratios always 

perform better than other measures. For a discussion of this point see Lien (2005). 

5 For example: 33 −−=∆ ttt yyy  or, equivalently, 213 −− ∆+∆+∆=∆ tttt yyyy . 

6 It is sufficient to divide by k both numerator and denominator of the first r.h.s. term 

of 6 to see that its limit tends to β
1  which multiplied by the limit of MVHR (that is β) 

gives unity. 

7 Monte Carlo results are obtained running 5000 simulations. 

8 The hedging effectiveness (HE) is computed as follows: 

)portfolio unhedged(

)portfolio hedged(
1

Var

Var
HE −= . 

9 This estimator was proposed by Hansen and Hodrik (1980). 

10 Futures series are obtained from Bloomberg, while spot series are obtained from 

ISMEA. 



11 We have performed the ADF test with drift and trend. 

12 Lags have been selected according to the higher value provided by the Aikake's 

AIC, Hannan and Quinn, Schwarz's BIC, and Lutkepohl final prediction error.  

13 This result is confirmed, for example, in Chen, Lee and Shrestha (2004), Juhl, 

Kawaller and Koch (2012). 
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Appendix A 

From equation (1) in the article we get: 
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Similarly we get: 
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which by induction leads to the general case of a k multiperiod change 
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Which, after simple algebra, simplifies to 
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Now we can write the expression for the hedge ratio: 
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The Ederington hedging effectiveness measure is given by: 
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That is 
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Where the first r.h.s. term is given by: 
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